

 Pi_netrw

 Nvim :help pages, generated
 from source
 using the tree-sitter-vimdoc parser.

 	 --
	 NETRW REFERENCE MANUAL by Charles E. Campbell
	 --
Author: Charles E. Campbell <>
	 (remove NOSPAM from Campbell's email first)

Copyright: Copyright (C) 2017 Charles E Campbell
	The VIM LICENSE applies to the files in this package, including
	netrw.vim, pi_netrw.txt, netrwFileHandlers.vim, netrwSettings.vim, and
	syntax/netrw.vim. Like anything else that's free, netrw.vim and its
	associated files are provided *as is* and comes with no warranty of
	any kind, either expressed or implied. No guarantees of
	merchantability. No guarantees of suitability for any purpose. By
	using this plugin, you agree that in no event will the copyright
	holder be liable for any damages resulting from the use of this
	software. Use at your own risk!

		netrw
		dav ftp netrw-file rcp scp
		davs http netrw.vim rsync sftp
		fetch network

1. Contents						netrw-contents {{{1

1. Contents..|netrw-contents|
2. Starting With Netrw...................................|netrw-start|
3. Netrw Reference.......................................|netrw-ref|
 EXTERNAL APPLICATIONS AND PROTOCOLS.................|netrw-externapp|
 READING...|netrw-read|
 WRITING...|netrw-write|
 SOURCING..|netrw-source|
 DIRECTORY LISTING...................................|netrw-dirlist|
 CHANGING THE USERID AND PASSWORD....................|netrw-chgup|
 VARIABLES AND SETTINGS..............................|netrw-variables|
 PATHS...|netrw-path|
4. Network-Oriented File Transfer........................|netrw-xfer|
 NETRC...|netrw-netrc|
 PASSWORD..|netrw-passwd|
5. Activation..|netrw-activate|
6. Transparent Remote File Editing.......................|netrw-transparent|
7. Ex Commands...|netrw-ex|
8. Variables and Options.................................|netrw-variables|
9. Browsing..|netrw-browse|
 Introduction To Browsing............................|netrw-intro-browse|
 Quick Reference: Maps...............................|netrw-browse-maps|
 Quick Reference: Commands...........................|netrw-browse-cmds|
 Banner Display......................................|netrw-I|
 Bookmarking A Directory.............................|netrw-mb|
 Browsing..|netrw-cr|
 Squeezing the Current Tree-Listing Directory........|netrw-s-cr|
 Browsing With A Horizontally Split Window...........|netrw-o|
 Browsing With A New Tab.............................|netrw-t|
 Browsing With A Vertically Split Window.............|netrw-v|
 Change File Permission..............................|netrw-gp|
 Change Listing Style.(thin wide long tree)..........|netrw-i|
 Changing To A Bookmarked Directory..................|netrw-gb|
 Changing To A Predecessor Directory.................|netrw-u|
 Changing To A Successor Directory...................|netrw-U|
 Customizing Browsing With A Special Handler.........|netrw-x|
 Deleting Bookmarks..................................|netrw-mB|
 Deleting Files Or Directories.......................|netrw-D|
 Directory Exploring Commands........................|netrw-explore|
 Exploring With Stars and Patterns...................|netrw-star|
 Displaying Information About File...................|netrw-qf|
 Edit File Or Directory Hiding List..................|netrw-ctrl-h|
 Editing The Sorting Sequence........................|netrw-S|
 Forcing treatment as a file or directory............|netrw-gd| netrw-gf
 Going Up..|netrw--|
 Hiding Files Or Directories.........................|netrw-a|
 Improving Browsing..................................|netrw-ssh-hack|
 Listing Bookmarks And History.......................|netrw-qb|
 Making A New Directory..............................|netrw-d|
 Making The Browsing Directory The Current Directory.|netrw-cd|
 Marking Files.......................................|netrw-mf|
 Unmarking Files.....................................|netrw-mF|
 Marking Files By Location List......................|netrw-qL|
 Marking Files By QuickFix List......................|netrw-qF|
 Marking Files By Regular Expression.................|netrw-mr|
 Marked Files: Arbitrary Shell Command...............|netrw-mx|
 Marked Files: Arbitrary Shell Command, En Bloc......|netrw-mX|
 Marked Files: Arbitrary Vim Command.................|netrw-mv|
 Marked Files: Argument List.........................|netrw-ma| netrw-mA
 Marked Files: Buffer List...........................|netrw-cb| netrw-cB
 Marked Files: Compression And Decompression.........|netrw-mz|
 Marked Files: Copying...............................|netrw-mc|
 Marked Files: Diff..................................|netrw-md|
 Marked Files: Editing...............................|netrw-me|
 Marked Files: Grep..................................|netrw-mg|
 Marked Files: Hiding and Unhiding by Suffix.........|netrw-mh|
 Marked Files: Moving................................|netrw-mm|
 Marked Files: Sourcing..............................|netrw-ms|
 Marked Files: Setting the Target Directory..........|netrw-mt|
 Marked Files: Tagging...............................|netrw-mT|
 Marked Files: Target Directory Using Bookmarks......|netrw-Tb|
 Marked Files: Target Directory Using History........|netrw-Th|
 Marked Files: Unmarking.............................|netrw-mu|
 Netrw Browser Variables.............................|netrw-browser-var|
 Netrw Browsing And Option Incompatibilities.........|netrw-incompatible|
 Netrw Settings Window...............................|netrw-settings-window|
 Obtaining A File....................................|netrw-O|
 Preview Window......................................|netrw-p|
 Previous Window.....................................|netrw-P|
 Refreshing The Listing..............................|netrw-ctrl-l|
 Reversing Sorting Order.............................|netrw-r|
 Renaming Files Or Directories.......................|netrw-R|
 Selecting Sorting Style.............................|netrw-s|
 Setting Editing Window..............................|netrw-C|
10. Problems and Fixes....................................|netrw-problems|
11. Debugging Netrw Itself................................|netrw-debug|
12. History...|netrw-history|
13. Todo..|netrw-todo|
14. Credits...|netrw-credits|

2. Starting With Netrw					netrw-start {{{1

Netrw makes reading files, writing files, browsing over a network, and
local browsing easy! First, make sure that you have plugins enabled, so
you'll need to have at least the following in your <.vimrc>:
(or see netrw-activate)set nocp " 'compatible' is not set
filetype plugin on " plugins are enabled

(see 'cp' and :filetype-plugin-on)

Netrw supports "transparent" editing of files on other machines using urls
(see netrw-transparent). As an example of this, let's assume you have an
account on some other machine; if you can use scp, try:vim scp://hostname/path/to/file

Want to make ssh/scp easier to use? Check out netrw-ssh-hack!

So, what if you have ftp, not ssh/scp? That's easy, too; tryvim ftp://hostname/path/to/file

Want to make ftp simpler to use? See if your ftp supports a file called

.netrc> -- typically it goes in your home directory, has read/write
permissions for only the user to read (ie. not group, world, other, etc),
and has lines resemblingmachine HOSTNAME login USERID password "PASSWORD"
machine HOSTNAME login USERID password "PASSWORD"
...
default login USERID password "PASSWORD"

Windows' ftp doesn't support .netrc; however, one may have in one's .vimrc:let g:netrw_ftp_cmd= 'c:\Windows\System32\ftp -s:C:\Users\MyUserName\MACHINE'

Netrw will substitute the host's machine name for "MACHINE" from the URL it is
attempting to open, and so one may specifyuserid
password

for each site in a separate file: c:\Users\MyUserName\MachineName.

Now about browsing -- when you just want to look around before editing a
file. For browsing on your current host, just "edit" a directory:vim .
vim /home/userid/path

For browsing on a remote host, "edit" a directory (but make sure that
the directory name is followed by a "/"):vim scp://hostname/
vim ftp://hostname/path/to/dir/

See netrw-browse for more!

There are more protocols supported by netrw than just scp and ftp, too: see the
next section, netrw-externapp, on how to use these external applications with
netrw and vim.

PREVENTING LOADING					netrw-noload

If you want to use plugins, but for some reason don't wish to use netrw, then
you need to avoid loading both the plugin and the autoload portions of netrw.
You may do so by placing the following two lines in your <.vimrc>::let g:loaded_netrw = 1
:let g:loaded_netrwPlugin = 1

3. Netrw Reference					netrw-ref {{{1

 Netrw supports several protocols in addition to scp and ftp as mentioned
 in netrw-start. These include dav, fetch, http,... well, just look
 at the list in netrw-externapp. Each protocol is associated with a
 variable which holds the default command supporting that protocol.

EXTERNAL APPLICATIONS AND PROTOCOLS			netrw-externapp {{{2

	Protocol Variable	 Default Value
	-------- ---------------- -------------
	 dav: g:netrw_dav_cmd = "cadaver" if cadaver is executable
	 dav: g:netrw_dav_cmd = "curl -o" elseif curl is available
	 fetch: g:netrw_fetch_cmd = "fetch -o" if fetch is available
	 ftp: g:netrw_ftp_cmd = "ftp"
	 http: g:netrw_http_cmd = "elinks" if elinks is available
	 http: g:netrw_http_cmd = "links" elseif links is available
	 http: g:netrw_http_cmd = "curl" elseif curl is available
	 http: g:netrw_http_cmd = "wget" elseif wget is available
	 http: g:netrw_http_cmd = "fetch" elseif fetch is available
	 http: g:netrw_http_put_cmd = "curl -T"
	 rcp: g:netrw_rcp_cmd = "rcp"
	 rsync: g:netrw_rsync_cmd = "rsync" (see g:netrw_rsync_sep)
	 scp: g:netrw_scp_cmd = "scp -q"
	 sftp: g:netrw_sftp_cmd = "sftp"
	 file: g:netrw_file_cmd = "elinks" or "links"

	g:netrw_http_xcmd : the option string for http://... protocols are
	specified via this variable and may be independently overridden. By
	default, the option arguments for the http-handling commands are:elinks : "-source >"
links : "-dump >"
curl : "-L -o"
wget : "-q -O"
fetch : "-o"

	For example, if your system has elinks, and you'd rather see the
	page using an attempt at rendering the text, you may wish to havelet g:netrw_http_xcmd= "-dump >"

	in your .vimrc.

	g:netrw_http_put_cmd: this option specifies both the executable and
	any needed options. This command does a PUT operation to the url.

READING						netrw-read netrw-nread {{{2

	Generally, one may just use the URL notation with a normal editing
	command, such as:e ftp://[user@]machine/path

	Netrw also provides the Nread command:

	:Nread ?					give help
	:Nread "machine:path"				uses rcp
	:Nread "machine path"				uses ftp w/ <.netrc>
	:Nread "machine id password path"		uses ftp
	:Nread "dav://machine[:port]/path"		uses cadaver
	:Nread "fetch://[user@]machine/path"		uses fetch
	:Nread "ftp://[user@]machine[[:#]port]/path"	uses ftp w/ <.netrc>
	:Nread "http://[user@]machine/path"		uses http uses wget
	:Nread "rcp://[user@]machine/path"		uses rcp
	:Nread "rsync://[user@]machine[:port]/path"	uses rsync
	:Nread "scp://[user@]machine[[:#]port]/path"	uses scp
	:Nread "sftp://[user@]machine/path"		uses sftp

WRITING					netrw-write netrw-nwrite {{{2

	One may just use the URL notation with a normal file writing
	command, such as:w ftp://[user@]machine/path

	Netrw also provides the Nwrite command:

	:Nwrite ?					give help
	:Nwrite "machine:path"				uses rcp
	:Nwrite "machine path"				uses ftp w/ <.netrc>
	:Nwrite "machine id password path"		uses ftp
	:Nwrite "dav://machine[:port]/path"		uses cadaver
	:Nwrite "ftp://[user@]machine[[:#]port]/path"	uses ftp w/ <.netrc>
	:Nwrite "rcp://[user@]machine/path"		uses rcp
	:Nwrite "rsync://[user@]machine[:port]/path"	uses rsync
	:Nwrite "scp://[user@]machine[[:#]port]/path"	uses scp
	:Nwrite "sftp://[user@]machine/path"		uses sftp
	http: not supported!

SOURCING					netrw-source {{{2

	One may just use the URL notation with the normal file sourcing
	command, such as:so ftp://[user@]machine/path

	Netrw also provides the Nsource command:

	:Nsource ?					give help
	:Nsource "dav://machine[:port]/path"		uses cadaver
	:Nsource "fetch://[user@]machine/path"		uses fetch
	:Nsource "ftp://[user@]machine[[:#]port]/path"	uses ftp w/ <.netrc>
	:Nsource "http://[user@]machine/path"		uses http uses wget
	:Nsource "rcp://[user@]machine/path"		uses rcp
	:Nsource "rsync://[user@]machine[:port]/path"	uses rsync
	:Nsource "scp://[user@]machine[[:#]port]/path"	uses scp
	:Nsource "sftp://[user@]machine/path"		uses sftp

DIRECTORY LISTING		netrw-trailingslash netrw-dirlist {{{2

	One may browse a directory to get a listing by simply attempting to
	edit the directory::e scp://[user]@hostname/path/
:e ftp://[user]@hostname/path/

	For remote directory listings (ie. those using scp or ftp), that
	trailing "/" is necessary (the slash tells netrw to treat the argument
	as a directory to browse instead of as a file to download).

	The Nread command may also be used to accomplish this (again, that
	trailing slash is necessary)::Nread [protocol]://[user]@hostname/path/

					netrw-login netrw-password
CHANGING USERID AND PASSWORD		netrw-chgup netrw-userpass {{{2

	Attempts to use ftp will prompt you for a user-id and a password.
	These will be saved in global variables g:netrw_uid and
	s:netrw_passwd; subsequent use of ftp will re-use those two strings,
	thereby simplifying use of ftp. However, if you need to use a
	different user id and/or password, you'll want to call NetUserPass()
	first. To work around the need to enter passwords, check if your ftp
	supports a <.netrc> file in your home directory. Also see
	netrw-passwd (and if you're using ssh/scp hoping to figure out how
	to not need to use passwords for scp, look at netrw-ssh-hack).

	:NetUserPass [uid [password]]		-- prompts as needed
	:call NetUserPass()			-- prompts for uid and password
	:call NetUserPass("uid")		-- prompts for password
	:call NetUserPass("uid","password")	-- sets global uid and password

(Related topics: ftp netrw-userpass netrw-start)

NETRW VARIABLES AND SETTINGS				netrw-variables {{{2
 (Also see:
 netrw-browser-var : netrw browser option variables
 netrw-protocol : file transfer protocol option variables
 netrw-settings : additional file transfer options
 netrw-browser-options : these options affect browsing directories
)

Netrw provides a lot of variables which allow you to customize netrw to your
preferences. One way to look at them is via the command :NetrwSettings (see
netrw-settings) which will display your current netrw settings. Most such
settings are described below, in netrw-browser-options, and in
netrw-externapp:

 b:netrw_lastfile 	last file Network-read/written retained on a
			per-buffer basis (supports plain :Nw)

 g:netrw_bufsettings 	the settings that netrw buffers have
			(default) noma nomod nonu nowrap ro nobl

 g:netrw_chgwin 	specifies a window number where subsequent file edits
			will take place. (also see netrw-C)
			(default) -1

 g:Netrw_funcref 	specifies a function (or functions) to be called when
			netrw edits a file. The file is first edited, and
			then the function reference (Funcref) is called.
			This variable may also hold a List of Funcrefs.
			(default) not defined. (the capital in g:Netrw...
			is required by its holding a function reference)
Example: place in .vimrc; affects all file opening
fun! MyFuncRef()
endfun
let g:Netrw_funcref= function("MyFuncRef")

 g:Netrw_UserMaps 	specifies a function or List of functions which can
			be used to set up user-specified maps and functionality.
			See netrw-usermaps

 g:netrw_ftp 		 if it doesn't exist, use default ftp
			=0 use default ftp		 (uid password)
			=1 use alternate ftp method	 (user uid password)
			 If you're having trouble with ftp, try changing the
			 value of this variable to see if the alternate ftp
			 method works for your setup.

 g:netrw_ftp_options Chosen by default, these options are supposed to
			 turn interactive prompting off and to restrain ftp
			 from attempting auto-login upon initial connection.
			 However, it appears that not all ftp implementations
			 support this (ex. ncftp).
		 ="-i -n"

 g:netrw_ftpextracmd 	default: doesn't exist
			If this variable exists, then any string it contains
			will be placed into the commands set to your ftp
			client. As an example:
			 ="passive"

 g:netrw_ftpmode 	="binary"				 (default)
			="ascii"

 g:netrw_ignorenetrc 	=0 (default for linux, cygwin)
			=1 If you have a <.netrc> file but it doesn't work and
			 you want it ignored, then set this variable as
			 shown. (default for Windows + cmd.exe)

 g:netrw_menu 		=0 disable netrw's menu
			=1 (default) netrw's menu enabled

 g:netrw_nogx 		if this variable exists, then the "gx" map will not
			be available (see netrw-gx)

 g:netrw_uid 		(ftp) user-id, retained on a per-vim-session basis
 s:netrw_passwd 	(ftp) password, retained on a per-vim-session basis

 g:netrw_preview 	=0 (default) preview window shown in a horizontally
			 split window
			=1 preview window shown in a vertically split window.
			 Also affects the "previous window" (see netrw-P)
			 in the same way.
			The g:netrw_alto variable may be used to provide
			additional splitting control:
				g:netrw_preview g:netrw_alto result
				 0 0 :aboveleft
				 0 1 :belowright
				 1 0 :topleft
				 1 1 :botright
			To control sizing, see g:netrw_winsize

 g:netrw_scpport 	= "-P" : option to use to set port for scp
 g:netrw_sshport 	= "-p" : option to use to set port for ssh

 g:netrw_sepchr 	=\0xff
			=\0x01 for enc == euc-jp (and perhaps it should be for
			 others, too, please let me know)
			 Separates priority codes from filenames internally.
			 See netrw-p12.

 g:netrw_silent 	=0 : transfers done normally
			=1 : transfers done silently

 g:netrw_use_errorwindow =2: messages from netrw will use a popup window
			 Move the mouse and pause to remove the popup window.
			 =1 : messages from netrw will use a separate one
			 line window. This window provides reliable
			 delivery of messages.
			 =0 : (default) messages from netrw will use echoerr ;
			 messages don't always seem to show up this
			 way, but one doesn't have to quit the window.

 g:netrw_win95ftp 	=1 if using Win95, will remove four trailing blank
			 lines that o/s's ftp "provides" on transfers
			=0 force normal ftp behavior (no trailing line removal)

 g:netrw_cygwin 	=1 assume scp under windows is from cygwin. Also
			 permits network browsing to use ls with time and
			 size sorting (default if windows)
			=0 assume Windows' scp accepts windows-style paths
			 Network browsing uses dir instead of ls
			 This option is ignored if you're using unix

 g:netrw_use_nt_rcp 	=0 don't use the rcp of WinNT, Win2000 and WinXP
			=1 use WinNT's rcp in binary mode (default)

PATHS							netrw-path {{{2

Paths to files are generally user-directory relative for most protocols.
It is possible that some protocol will make paths relative to some
associated directory, however.
example: vim scp://user@host/somefile
example: vim scp://user@host/subdir1/subdir2/somefile

where "somefile" is in the "user"'s home directory. If you wish to get a
file using root-relative paths, use the full path:
example: vim scp://user@host//somefile
example: vim scp://user@host//subdir1/subdir2/somefile

4. Network-Oriented File Transfer			netrw-xfer {{{1

Network-oriented file transfer under Vim is implemented by a vim script
(<netrw.vim>) using plugin techniques. It currently supports both reading and
writing across networks using rcp, scp, ftp or ftp+<.netrc>, scp, fetch,
dav/cadaver, rsync, or sftp.

http is currently supported read-only via use of wget or fetch.

<netrw.vim> is a standard plugin which acts as glue between Vim and the
various file transfer programs. It uses autocommand events (BufReadCmd,
FileReadCmd, BufWriteCmd) to intercept reads/writes with url-like filenames.ex. vim ftp://hostname/path/to/file

The characters preceding the colon specify the protocol to use; in the
example, it's ftp. The <netrw.vim> script then formulates a command or a
series of commands (typically ftp) which it issues to an external program
(ftp, scp, etc) which does the actual file transfer/protocol. Files are read
from/written to a temporary file (under Unix/Linux, /tmp/...) which the
<netrw.vim> script will clean up.

Now, a word about Jan Minář's "FTP User Name and Password Disclosure"; first,
ftp is not a secure protocol. User names and passwords are transmitted "in
the clear" over the internet; any snooper tool can pick these up; this is not
a netrw thing, this is a ftp thing. If you're concerned about this, please
try to use scp or sftp instead.

Netrw re-uses the user id and password during the same vim session and so long
as the remote hostname remains the same.

Jan seems to be a bit confused about how netrw handles ftp; normally multiple
commands are performed in a "ftp session", and he seems to feel that the
uid/password should only be retained over one ftp session. However, netrw
does every ftp operation in a separate "ftp session"; so remembering the
uid/password for just one "ftp session" would be the same as not remembering
the uid/password at all. IMHO this would rapidly grow tiresome as one
browsed remote directories, for example.

On the other hand, thanks go to Jan M. for pointing out the many
vulnerabilities that netrw (and vim itself) had had in handling "crafted"
filenames. The shellescape() and fnameescape() functions were written in
response by Bram Moolenaar to handle these sort of problems, and netrw has
been modified to use them. Still, my advice is, if the "filename" looks like
a vim command that you aren't comfortable with having executed, don't open it.

				netrw-putty netrw-pscp netrw-psftp
One may modify any protocol's implementing external application by setting a
variable (ex. scp uses the variable g:netrw_scp_cmd, which is defaulted to
"scp -q"). As an example, consider using PuTTY:let g:netrw_scp_cmd = '"c:\Program Files\PuTTY\pscp.exe" -q -batch'
let g:netrw_sftp_cmd= '"c:\Program Files\PuTTY\psftp.exe"'

(note: it has been reported that windows 7 with putty v0.6's "-batch" option
 doesn't work, so its best to leave it off for that system)

See netrw-p8 for more about putty, pscp, psftp, etc.

Ftp, an old protocol, seems to be blessed by numerous implementations.
Unfortunately, some implementations are noisy (ie., add junk to the end of the
file). Thus, concerned users may decide to write a NetReadFixup() function
that will clean up after reading with their ftp. Some Unix systems (ie.,
FreeBSD) provide a utility called "fetch" which uses the ftp protocol but is
not noisy and more convenient, actually, for <netrw.vim> to use.
Consequently, if "fetch" is available (ie. executable), it may be preferable
to use it for ftp://... based transfers.

For rcp, scp, sftp, and http, one may use network-oriented file transfers
transparently; ie.
vim rcp://[user@]machine/path
vim scp://[user@]machine/path

If your ftp supports <.netrc>, then it too can be transparently used
if the needed triad of machine name, user id, and password are present in
that file. Your ftp must be able to use the <.netrc> file on its own, however.
vim ftp://[user@]machine[[:#]portnumber]/path

Windows provides an ftp (typically c:\Windows\System32\ftp.exe) which uses
an option, -s:filename (filename can and probably should be a full path)
which contains ftp commands which will be automatically run whenever ftp
starts. You may use this feature to enter a user and password for one site:userid
password

				netrw-windows-netrc netrw-windows-s
If g:netrw_ftp_cmd contains -s:[path/]MACHINE, then (on Windows machines
only) netrw will substitute the current machine name requested for ftp
connections for MACHINE. Hence one can have multiple machine.ftp files
containing login and password for ftp. Example:let g:netrw_ftp_cmd= 'c:\Windows\System32\ftp -s:C:\Users\Myself\MACHINE'
vim ftp://myhost.somewhere.net/

will use a fileC:\Users\Myself\myhost.ftp

Often, ftp will need to query the user for the userid and password.
The latter will be done "silently"; ie. asterisks will show up instead of
the actually-typed-in password. Netrw will retain the userid and password
for subsequent read/writes from the most recent transfer so subsequent
transfers (read/write) to or from that machine will take place without
additional prompting.

								netrw-urls
 +=================================+============================+============+
 | Reading | Writing | Uses |
 +=================================+============================+============+
DAV:		
dav://host/path		cadaver
:Nread dav://host/path	:Nwrite dav://host/path	cadaver
+---------------------------------+----------------------------+------------+		
DAV + SSL:		
davs://host/path		cadaver
:Nread davs://host/path	:Nwrite davs://host/path	cadaver
+---------------------------------+----------------------------+------------+		
FETCH:		
fetch://[user@]host/path		
fetch://[user@]host:http/path	Not Available	fetch
:Nread fetch://[user@]host/path		
+---------------------------------+----------------------------+------------+		
FILE:		
file:///*	file:///*	
file://localhost/*	file://localhost/*	
+---------------------------------+----------------------------+------------+		
FTP: (*3)	(*3)	
ftp://[user@]host/path	ftp://[user@]host/path	ftp (*2)
:Nread ftp://host/path	:Nwrite ftp://host/path	ftp+.netrc
:Nread host path	:Nwrite host path	ftp+.netrc
:Nread host uid pass path	:Nwrite host uid pass path	ftp
+---------------------------------+----------------------------+------------+		
HTTP: wget is executable: (*4)		
http://[user@]host/path	Not Available	wget
+---------------------------------+----------------------------+------------+		
HTTP: fetch is executable (*4)		
http://[user@]host/path	Not Available	fetch
+---------------------------------+----------------------------+------------+		
RCP:		
rcp://[user@]host/path	rcp://[user@]host/path	rcp
+---------------------------------+----------------------------+------------+		
RSYNC:		
rsync://[user@]host/path	rsync://[user@]host/path	rsync
:Nread rsync://host/path	:Nwrite rsync://host/path	rsync
:Nread rcp://host/path	:Nwrite rcp://host/path	rcp
+---------------------------------+----------------------------+------------+		
SCP:		
scp://[user@]host/path	scp://[user@]host/path	scp
:Nread scp://host/path	:Nwrite scp://host/path	scp (*1)
+---------------------------------+----------------------------+------------+		
SFTP:		
sftp://[user@]host/path	sftp://[user@]host/path	sftp
:Nread sftp://host/path	:Nwrite sftp://host/path	sftp (*1)
 +=================================+============================+============+

	(*1) For an absolute path use scp://machine//path.

	(*2) if <.netrc> is present, it is assumed that it will
	work with your ftp client. Otherwise the script will
	prompt for user-id and password.

	(*3) for ftp, "machine" may be machine#port or machine:port
	if a different port is needed than the standard ftp port

	(*4) for http:..., if wget is available it will be used. Otherwise,
	if fetch is available it will be used.

Both the :Nread and the :Nwrite ex-commands can accept multiple filenames.

NETRC							netrw-netrc

The <.netrc> file, typically located in your home directory, contains lines
therein which map a hostname (machine name) to the user id and password you
prefer to use with it.

The typical syntax for lines in a <.netrc> file is given as shown below.
Ftp under Unix usually supports <.netrc>; ftp under Windows usually doesn't.
machine {full machine name} login {user-id} password "{password}"
default login {user-id} password "{password}"

Your ftp client must handle the use of <.netrc> on its own, but if the

.netrc> file exists, an ftp transfer will not ask for the user-id or
password.

Note:
	Since this file contains passwords, make very sure nobody else can
	read this file! Most programs will refuse to use a .netrc that is
	readable for others. Don't forget that the system administrator can
	still read the file! Ie. for Linux/Unix: chmod 600 .netrc

Even though Windows' ftp clients typically do not support .netrc, netrw has
a work-around: see netrw-windows-s.

PASSWORD						netrw-passwd

The script attempts to get passwords for ftp invisibly using inputsecret(),
a built-in Vim function. See netrw-userpass for how to change the password
after one has set it.

Unfortunately there doesn't appear to be a way for netrw to feed a password to
scp. Thus every transfer via scp will require re-entry of the password.
However, netrw-ssh-hack can help with this problem.

5. Activation						netrw-activate {{{1

Network-oriented file transfers are available by default whenever Vim's
'nocompatible' mode is enabled. Netrw's script files reside in your
system's plugin, autoload, and syntax directories; just the
plugin/netrwPlugin.vim script is sourced automatically whenever you bring up
vim. The main script in autoload/netrw.vim is only loaded when you actually
use netrw. I suggest that, at a minimum, you have at least the following in
your <.vimrc> customization file:set nocp
if version >= 600
 filetype plugin indent on
endif

By also including the following lines in your .vimrc, one may have netrw
immediately activate when using [g]vim without any filenames, showing the
current directory:" Augroup VimStartup:
augroup VimStartup
 au!
 au VimEnter * if expand("%") == "" | e . | endif
augroup END

6. Transparent Remote File Editing		netrw-transparent {{{1

Transparent file transfers occur whenever a regular file read or write
(invoked via an :autocmd for BufReadCmd, BufWriteCmd, or SourceCmd
events) is made. Thus one may read, write, or source files across networks
just as easily as if they were local files!vim ftp://[user@]machine/path
...
:wq

See netrw-activate for more on how to encourage your vim to use plugins
such as netrw.

For password-free use of scp:, see netrw-ssh-hack.

7. Ex Commands						netrw-ex {{{1

The usual read/write commands are supported. There are also a few
additional commands available. Often you won't need to use Nwrite or
Nread as shown in netrw-transparent (ie. simply use:e URL
:r URL
:w URL

instead, as appropriate) -- see netrw-urls. In the explanations
below, a {netfile} is a URL to a remote file.

						:Nwrite :Nw
:[range]Nw[rite]	Write the specified lines to the current
		file as specified in b:netrw_lastfile.
		(related: netrw-nwrite)

:[range]Nw[rite] {netfile} [{netfile}]...
		Write the specified lines to the {netfile}.

						:Nread :Nr
:Nr[ead]	Read the lines from the file specified in b:netrw_lastfile
		into the current buffer. (related: netrw-nread)

:Nr[ead] {netfile} {netfile}...
		Read the {netfile} after the current line.

						:Nsource :Ns
:Ns[ource] {netfile}
		Source the {netfile}.
		To start up vim using a remote .vimrc, one may use
		the following (all on one line) (tnx to Antoine Mechelynck)vim -u NORC -N
 --cmd "runtime plugin/netrwPlugin.vim"
 --cmd "source scp://HOSTNAME/.vimrc"

		 (related: netrw-source)

:call NetUserPass()				NetUserPass()
		If g:netrw_uid and s:netrw_passwd don't exist,
		this function will query the user for them.
		(related: netrw-userpass)

:call NetUserPass("userid")
		This call will set the g:netrw_uid and, if
		the password doesn't exist, will query the user for it.
		(related: netrw-userpass)

:call NetUserPass("userid","passwd")
		This call will set both the g:netrw_uid and s:netrw_passwd.
		The user-id and password are used by ftp transfers. One may
		effectively remove the user-id and password by using empty
		strings (ie. "").
		(related: netrw-userpass)

:NetrwSettings This command is described in netrw-settings -- used to
		display netrw settings and change netrw behavior.

8. Variables and Options		netrw-var netrw-settings {{{1

(also see: netrw-options netrw-variables netrw-protocol
 netrw-browser-settings netrw-browser-options)

The <netrw.vim> script provides several variables which act as options to
affect <netrw.vim>'s file transfer behavior. These variables typically may be
set in the user's <.vimrc> file: (see also netrw-settings netrw-protocol)
						netrw-options

 Netrw Options

Option Meaning
-------------- ---

 b:netrw_col Holds current cursor position (during NetWrite)
 g:netrw_cygwin =1 assume scp under windows is from cygwin
 (default/windows)
 =0 assume scp under windows accepts windows
 style paths (default/else)
 g:netrw_ftp =0 use default ftp (uid password)
 g:netrw_ftpmode ="binary" (default)
 ="ascii" (your choice)
	g:netrw_ignorenetrc =1 (default)
	 if you have a <.netrc> file but you don't
				 want it used, then set this variable. Its
				 mere existence is enough to cause <.netrc>
				 to be ignored.
 b:netrw_lastfile Holds latest method/machine/path.
 b:netrw_line Holds current line number (during NetWrite)
	g:netrw_silent =0 transfers done normally
	 =1 transfers done silently
 g:netrw_uid Holds current user-id for ftp.
 g:netrw_use_nt_rcp =0 don't use WinNT/2K/XP's rcp (default)
 =1 use WinNT/2K/XP's rcp, binary mode
 g:netrw_win95ftp =0 use unix-style ftp even if win95/98/ME/etc
 =1 use default method to do ftp---

						netrw-internal-variables
The script will also make use of the following variables internally, albeit
temporarily.

 Temporary Variables

Variable Meaning
-------- ------------------------------------

	b:netrw_method		Index indicating rcp/ftp+.netrc/ftp
	w:netrw_method		(same as b:netrw_method)
	g:netrw_machine		Holds machine name parsed from input
	b:netrw_fname		Holds filename being accessed--

							netrw-protocol

Netrw supports a number of protocols. These protocols are invoked using the
variables listed below, and may be modified by the user.

 Protocol Control Options

Option Type Setting Meaning
--------- -------- -------------- ---------------------------

 netrw_ftp variable =doesn't exist userid set by "user userid"
 =0 userid set by "user userid"
 =1 userid set by "userid"
 NetReadFixup function =doesn't exist no change
 =exists Allows user to have files
 read via ftp automatically
 transformed however they wish
 by NetReadFixup()
 g:netrw_dav_cmd var ="cadaver" if cadaver is executable
 g:netrw_dav_cmd var ="curl -o" elseif curl is executable
 g:netrw_fetch_cmd var ="fetch -o" if fetch is available
 g:netrw_ftp_cmd var ="ftp"
 g:netrw_http_cmd var ="fetch -o" if fetch is available
 g:netrw_http_cmd var ="wget -O" else if wget is available
 g:netrw_http_put_cmd var ="curl -T"
 g:netrw_list_cmd var ="ssh USEPORT HOSTNAME ls -Fa"
 g:netrw_rcp_cmd var ="rcp"
 g:netrw_rsync_cmd var ="rsync"
 g:netrw_rsync_sep var ="/" used to separate the hostname
 from the file spec
 g:netrw_scp_cmd var ="scp -q"
 g:netrw_sftp_cmd var ="sftp"---

								netrw-ftp

The g:netrw_..._cmd options (g:netrw_ftp_cmd and g:netrw_sftp_cmd)
specify the external program to use handle the ftp protocol. They may
include command line options (such as -p for passive mode). Example:let g:netrw_ftp_cmd= "ftp -p"

Browsing is supported by using the g:netrw_list_cmd; the substring
"HOSTNAME" will be changed via substitution with whatever the current request
is for a hostname.

Two options (g:netrw_ftp and netrw-fixup) both help with certain ftp's
that give trouble . In order to best understand how to use these options if
ftp is giving you troubles, a bit of discussion is provided on how netrw does
ftp reads.

For ftp, netrw typically builds up lines of one of the following formats in a
temporary file:
IF g:netrw_ftp !exists or is not 1 IF g:netrw_ftp exists and is 1
---------------------------------- ------------------------------

 open machine [port] open machine [port]
 user userid password userid password
 [g:netrw_ftpmode] password
 [g:netrw_ftpextracmd] [g:netrw_ftpmode]
 get filename tempfile [g:netrw_extracmd]
 get filename tempfile---

The g:netrw_ftpmode and g:netrw_ftpextracmd are optional.

Netrw then executes the lines above by use of a filter:
:%! {g:netrw_ftp_cmd} -i [-n]

where
	g:netrw_ftp_cmd is usually "ftp",
	-i tells ftp not to be interactive
	-n means don't use netrc and is used for Method #3 (ftp w/o <.netrc>)

If <.netrc> exists it will be used to avoid having to query the user for
userid and password. The transferred file is put into a temporary file.
The temporary file is then read into the main editing session window that
requested it and the temporary file deleted.

If your ftp doesn't accept the "user" command and immediately just demands a
userid, then try putting "let netrw_ftp=1" in your <.vimrc>.

								netrw-cadaver
To handle the SSL certificate dialog for untrusted servers, one may pull
down the certificate and place it into /usr/ssl/cert.pem. This operation
renders the server treatment as "trusted".

						netrw-fixup netreadfixup
If your ftp for whatever reason generates unwanted lines (such as AUTH
messages) you may write a NetReadFixup() function:
function! NetReadFixup(method,line1,line2)
 " a:line1: first new line in current file
 " a:line2: last new line in current file
 if a:method == 1 "rcp
 elseif a:method == 2 "ftp + <.netrc>
 elseif a:method == 3 "ftp + machine,uid,password,filename
 elseif a:method == 4 "scp
 elseif a:method == 5 "http/wget
 elseif a:method == 6 "dav/cadaver
 elseif a:method == 7 "rsync
 elseif a:method == 8 "fetch
 elseif a:method == 9 "sftp
 else " complain
 endif
endfunction

The NetReadFixup() function will be called if it exists and thus allows you to
customize your reading process. As a further example, <netrw.vim> contains
just such a function to handle Windows 95 ftp. For whatever reason, Windows
95's ftp dumps four blank lines at the end of a transfer, and so it is
desirable to automate their removal. Here's some code taken from <netrw.vim>
itself:
if has("win95") && g:netrw_win95ftp
 fun! NetReadFixup(method, line1, line2)
 if method == 3 " ftp (no <.netrc>)
 let fourblanklines= line2 - 3
 silent fourblanklines .. "," .. line2 .. "g/^\s*/d"
 endif
 endfunction
endif

(Related topics: ftp netrw-userpass netrw-start)

9. Browsing		netrw-browsing netrw-browse netrw-help {{{1
			netrw-browser netrw-dir netrw-list

INTRODUCTION TO BROWSING			netrw-intro-browse {{{2
	(Quick References: netrw-quickmaps netrw-quickcoms)

Netrw supports the browsing of directories on your local system and on remote
hosts; browsing includes listing files and directories, entering directories,
editing files therein, deleting files/directories, making new directories,
moving (renaming) files and directories, copying files and directories, etc.
One may mark files and execute any system command on them! The Netrw browser
generally implements the previous explorer's maps and commands for remote
directories, although details (such as pertinent global variable names)
necessarily differ. To browse a directory, simply "edit" it!vim /your/directory/
vim .
vim c:\your\directory\

(Related topics: netrw-cr netrw-o netrw-p netrw-P netrw-t
 netrw-mf netrw-mx netrw-D netrw-R netrw-v)

The Netrw remote file and directory browser handles two protocols: ssh and
ftp. The protocol in the url, if it is ftp, will cause netrw also to use ftp
in its remote browsing. Specifying any other protocol will cause it to be
used for file transfers; but the ssh protocol will be used to do remote
browsing.

To use Netrw's remote directory browser, simply attempt to read a "file" with
a trailing slash and it will be interpreted as a request to list a directory:
vim [protocol]://[user@]hostname/path/

where [protocol] is typically scp or ftp. As an example, try:vim ftp://ftp.home.vim.org/pub/vim/

For local directories, the trailing slash is not required. Again, because it's
easy to miss: to browse remote directories, the URL must terminate with a
slash!

If you'd like to avoid entering the password repeatedly for remote directory
listings with ssh or scp, see netrw-ssh-hack. To avoid password entry with
ftp, see netrw-netrc (if your ftp supports it).

There are several things you can do to affect the browser's display of files:

	* To change the listing style, press the "i" key (netrw-i).
	 Currently there are four styles: thin, long, wide, and tree.
	 To make that change "permanent", see g:netrw_liststyle.

	* To hide files (don't want to see those xyz~ files anymore?) see
	 netrw-ctrl-h.

	* Press s to sort files by name, time, or size.

See netrw-browse-cmds for all the things you can do with netrw!

			netrw-getftype netrw-filigree netrw-ftype
The getftype() function is used to append a bit of filigree to indicate
filetype to locally listed files:

	directory : /
	executable : *
	fifo : |
	links : @
	sockets : =

The filigree also affects the g:netrw_sort_sequence.

QUICK HELP						netrw-quickhelp {{{2
 (Use ctrl-] to select a topic)~
	Intro to Browsing...............................|netrw-intro-browse|
	 Quick Reference: Maps.........................|netrw-quickmap|
	 Quick Reference: Commands.....................|netrw-browse-cmds|
	Hiding
	 Edit hiding list..............................|netrw-ctrl-h|
	 Hiding Files or Directories...................|netrw-a|
	 Hiding/Unhiding by suffix.....................|netrw-mh|
	 Hiding dot-files.............................|netrw-gh|
	Listing Style
	 Select listing style (thin/long/wide/tree)....|netrw-i|
	 Associated setting variable...................|g:netrw_liststyle|
	 Shell command used to perform listing.........|g:netrw_list_cmd|
	 Quick file info...............................|netrw-qf|
	Sorted by
	 Select sorting style (name/time/size).........|netrw-s|
	 Editing the sorting sequence..................|netrw-S|
	 Sorting options...............................|g:netrw_sort_options|
	 Associated setting variable...................|g:netrw_sort_sequence|
	 Reverse sorting order.........................|netrw-r|

				netrw-quickmap netrw-quickmaps
QUICK REFERENCE: MAPS				netrw-browse-maps {{{2
--- ----------------- ----
Map Quick Explanation Link
--- ----------------- ----

	 <F1>	Causes Netrw to issue help
	 <cr>	Netrw will enter the directory or read the file netrw-cr
	 	Netrw will attempt to remove the file/directory netrw-del
	 <c-h>	Edit file hiding list netrw-ctrl-h
	 <c-l>	Causes Netrw to refresh the directory listing netrw-ctrl-l
	 <c-r>	Browse using a gvim server netrw-ctrl-r
	 <c-tab> Shrink/expand a netrw/explore window netrw-c-tab
	 -	Makes Netrw go up one directory netrw--
	 a	Cycles between normal display, netrw-a
		hiding (suppress display of files matching g:netrw_list_hide)
		and showing (display only files which match g:netrw_list_hide)
	 cd	Make browsing directory the current directory netrw-cd
	 C	Setting the editing window netrw-C
	 d	Make a directory netrw-d
	 D	Attempt to remove the file(s)/directory(ies) netrw-D
	 gb	Go to previous bookmarked directory netrw-gb
	 gd	Force treatment as directory netrw-gd
	 gf	Force treatment as file netrw-gf
	 gh	Quick hide/unhide of dot-files netrw-gh
	 gn	Make top of tree the directory below the cursor netrw-gn
	 gp	Change local-only file permissions netrw-gp
	 i	Cycle between thin, long, wide, and tree listings netrw-i
	 I	Toggle the displaying of the banner netrw-I
	 mb	Bookmark current directory netrw-mb
	 mc	Copy marked files to marked-file target directory netrw-mc
	 md	Apply diff to marked files (up to 3) netrw-md
	 me	Place marked files on arg list and edit them netrw-me
	 mf	Mark a file netrw-mf
	 mF	Unmark files netrw-mF
	 mg	Apply vimgrep to marked files netrw-mg
	 mh	Toggle marked file suffices' presence on hiding list netrw-mh
	 mm	Move marked files to marked-file target directory netrw-mm
	 mr	Mark files using a shell-style regexp netrw-mr
	 mt	Current browsing directory becomes markfile target netrw-mt
	 mT	Apply ctags to marked files netrw-mT
	 mu	Unmark all marked files netrw-mu
	 mv	Apply arbitrary vim command to marked files netrw-mv
	 mx	Apply arbitrary shell command to marked files netrw-mx
	 mX	Apply arbitrary shell command to marked files en bloc|netrw-mX|
	 mz	Compress/decompress marked files netrw-mz
	 o	Enter the file/directory under the cursor in a new netrw-o
		browser window. A horizontal split is used.
	 O	Obtain a file specified by cursor netrw-O
	 p	Preview the file netrw-p
	 P	Browse in the previously used window netrw-P
	 qb	List bookmarked directories and history netrw-qb
	 qf	Display information on file netrw-qf
	 qF	Mark files using a quickfix list netrw-qF
	 qL	Mark files using a location-list netrw-qL
	 r	Reverse sorting order netrw-r
	 R	Rename the designated file(s)/directory(ies) netrw-R
	 s	Select sorting style: by name, time, or file size netrw-s
	 S	Specify suffix priority for name-sorting netrw-S
	 t	Enter the file/directory under the cursor in a new tab|netrw-t|
	 u	Change to recently-visited directory netrw-u
	 U	Change to subsequently-visited directory netrw-U
	 v	Enter the file/directory under the cursor in a new netrw-v
		browser window. A vertical split is used.
	 x	View file with an associated program netrw-x
	 X	Execute filename under cursor via system() netrw-X

	 %	Open a new file in netrw's current directory netrw-%

	netrw-mouse netrw-leftmouse netrw-middlemouse netrw-rightmouse
	<leftmouse>	(gvim only) selects word under mouse as if a <cr>
			had been pressed (ie. edit file, change directory)
	<middlemouse>	(gvim only) same as P selecting word under mouse;
			see netrw-P
	<rightmouse>	(gvim only) delete file/directory using word under
			mouse
	<2-leftmouse>	(gvim only) when:
			 * in a netrw-selected file, AND
			 * g:netrw_retmap == 1 AND
			 * the user doesn't already have a <2-leftmouse>
			 mapping defined before netrw is autoloaded,
			then a double clicked leftmouse button will return
			to the netrw browser window. See g:netrw_retmap.
	<s-leftmouse>	(gvim only) like mf, will mark files. Dragging
			the shifted leftmouse will mark multiple files.
			(see netrw-mf)

	(to disable mouse buttons while browsing: g:netrw_mousemaps)

				netrw-quickcom netrw-quickcoms
QUICK REFERENCE: COMMANDS	netrw-explore-cmds netrw-browse-cmds {{{2
 :NetrwClean[!]..|netrw-clean|
 :NetrwSettings..|netrw-settings|
 :Ntree..|netrw-ntree|
 :Explore[!] [dir] Explore directory of current file......|netrw-explore|
 :Hexplore[!] [dir] Horizontal Split & Explore.............|netrw-explore|
 :Lexplore[!] [dir] Left Explorer Toggle...................|netrw-explore|
 :Nexplore[!] [dir] Vertical Split & Explore...............|netrw-explore|
 :Pexplore[!] [dir] Vertical Split & Explore...............|netrw-explore|
 :Rexplore Return to Explorer.....................|netrw-explore|
 :Sexplore[!] [dir] Split & Explore directory|netrw-explore|
 :Texplore[!] [dir] Tab & Explore..........................|netrw-explore|
 :Vexplore[!] [dir] Vertical Split & Explore...............|netrw-explore|

BANNER DISPLAY						netrw-I

One may toggle the displaying of the banner by pressing "I".

Also See: g:netrw_banner

BOOKMARKING A DIRECTORY		netrw-mb netrw-bookmark netrw-bookmarks {{{2

One may easily "bookmark" the currently browsed directory by usingmb

								.netrwbook
Bookmarks are retained in between sessions of vim in a file called .netrwbook
as a List, which is typically stored in the first directory on the user's
'runtimepath'; entries are kept in sorted order.

If there are marked files and/or directories, mb will add them to the bookmark
list.

								netrw-:NetrwMB
Additionally, one may use :NetrwMB to bookmark files or directories.:NetrwMB[!] [files/directories]

 No bang: enters files/directories into Netrw's bookmark system

 No argument and in netrw buffer:
 if there are marked files : bookmark marked files
 otherwise : bookmark file/directory under cursor
 No argument and not in netrw buffer: bookmarks current open file
 Has arguments : glob()s each arg and bookmarks them

 With bang: deletes files/directories from Netrw's bookmark system

The :NetrwMB command is available outside of netrw buffers (once netrw has been
invoked in the session).

The file ".netrwbook" holds bookmarks when netrw (and vim) is not active. By
default, its stored on the first directory on the user's 'runtimepath'.

Related Topics:
	netrw-gb how to return (go) to a bookmark
	netrw-mB how to delete bookmarks
	netrw-qb how to list bookmarks
	g:netrw_home controls where .netrwbook is kept

BROWSING					netrw-enter	netrw-cr {{{2

Browsing is simple: move the cursor onto a file or directory of interest.
Hitting the <cr> (the return key) will select the file or directory.
Directories will themselves be listed, and files will be opened using the
protocol given in the original read request.

 CAVEAT: There are four forms of listing (see netrw-i). Netrw assumes that
 two or more spaces delimit filenames and directory names for the long and
 wide listing formats. Thus, if your filename or directory name has two or
 more sequential spaces embedded in it, or any trailing spaces, then you'll
 need to use the "thin" format to select it.

The g:netrw_browse_split option, which is zero by default, may be used to
cause the opening of files to be done in a new window or tab instead of the
default. When the option is one or two, the splitting will be taken
horizontally or vertically, respectively. When the option is set to three, a
<cr> will cause the file to appear in a new tab.

When using the gui (gvim), one may select a file by pressing the <leftmouse>
button. In addition, if

 * g:netrw_retmap == 1 AND (its default value is 0)
 * in a netrw-selected file, AND
 * the user doesn't already have a <2-leftmouse> mapping defined before
 netrw is loaded

then a doubly-clicked leftmouse button will return to the netrw browser
window.

Netrw attempts to speed up browsing, especially for remote browsing where one
may have to enter passwords, by keeping and re-using previously obtained
directory listing buffers. The g:netrw_fastbrowse variable is used to
control this behavior; one may have slow browsing (no buffer re-use), medium
speed browsing (re-use directory buffer listings only for remote directories),
and fast browsing (re-use directory buffer listings as often as possible).
The price for such re-use is that when changes are made (such as new files
are introduced into a directory), the listing may become out-of-date. One may
always refresh directory listing buffers by pressing ctrl-L (see
netrw-ctrl-l).

								netrw-s-cr
Squeezing the Current Tree-Listing Directory~

When the tree listing style is enabled (see netrw-i) and one is using
gvim, then the <s-cr> mapping may be used to squeeze (close) the
directory currently containing the cursor.

Otherwise, one may remap a key combination of one's own choice to get
this effect:nmap <buffer> <silent> <nowait> YOURKEYCOMBO <Plug>NetrwTreeSqueeze

Put this line in $HOME/ftplugin/netrw/netrw.vim; it needs to be generated
for netrw buffers only.

Related topics:
	netrw-ctrl-r 	netrw-o 	netrw-p
	netrw-P 	netrw-t 	netrw-v
Associated setting variables:
 g:netrw_browse_split 	g:netrw_fastbrowse
 g:netrw_ftp_list_cmd 	g:netrw_ftp_sizelist_cmd
 g:netrw_ftp_timelist_cmd 	g:netrw_ssh_browse_reject
 g:netrw_ssh_cmd 		g:netrw_use_noswf

BROWSING WITH A HORIZONTALLY SPLIT WINDOW	netrw-o netrw-horiz {{{2

Normally one enters a file or directory using the <cr>. However, the "o" map
allows one to open a new window to hold the new directory listing or file. A
horizontal split is used. (for vertical splitting, see netrw-v)

Normally, the o key splits the window horizontally with the new window and
cursor at the top.

Associated setting variables: g:netrw_alto g:netrw_winsize

Related topics:
	netrw-ctrl-r 	netrw-o 	netrw-p
	netrw-P 	netrw-t 	netrw-v
Associated setting variables:
 g:netrw_alto control above/below splitting
 g:netrw_winsize control initial sizing

BROWSING WITH A NEW TAB				netrw-t {{{2

Normally one enters a file or directory using the <cr>. The "t" map
allows one to open a new window holding the new directory listing or file in
a new tab.

If you'd like to have the new listing in a background tab, use gT.

Related topics:
	netrw-ctrl-r 	netrw-o 	netrw-p
	netrw-P 	netrw-t 	netrw-v
Associated setting variables:
 g:netrw_winsize control initial sizing

BROWSING WITH A VERTICALLY SPLIT WINDOW			netrw-v {{{2

Normally one enters a file or directory using the <cr>. However, the "v" map
allows one to open a new window to hold the new directory listing or file. A
vertical split is used. (for horizontal splitting, see netrw-o)

Normally, the v key splits the window vertically with the new window and
cursor at the left.

There is only one tree listing buffer; using "v" on a displayed subdirectory
will split the screen, but the same buffer will be shown twice.

Related topics:
	netrw-ctrl-r 	netrw-o 	netrw-p
	netrw-P 	netrw-t 	netrw-v
Associated setting variables:
 g:netrw_altv control right/left splitting
 g:netrw_winsize control initial sizing

BROWSING USING A GVIM SERVER			netrw-ctrl-r {{{2

One may keep a browsing gvim separate from the gvim being used to edit.
Use the <c-r> map on a file (not a directory) in the netrw browser, and it
will use a gvim server (see g:netrw_servername). Subsequent use of <cr>
(see netrw-cr) will re-use that server for editing files.

Related topics:
	netrw-ctrl-r 	netrw-o 	netrw-p
	netrw-P 	netrw-t 	netrw-v
Associated setting variables:
	g:netrw_servername : sets name of server
	g:netrw_browse_split : controls how <cr> will open files

CHANGE LISTING STYLE (THIN LONG WIDE TREE)			netrw-i {{{2

The "i" map cycles between the thin, long, wide, and tree listing formats.

The thin listing format gives just the files' and directories' names.

The long listing is either based on the "ls" command via ssh for remote
directories or displays the filename, file size (in bytes), and the time and
date of last modification for local directories. With the long listing
format, netrw is not able to recognize filenames which have trailing spaces.
Use the thin listing format for such files.

The wide listing format uses two or more contiguous spaces to delineate
filenames; when using that format, netrw won't be able to recognize or use
filenames which have two or more contiguous spaces embedded in the name or any
trailing spaces. The thin listing format will, however, work with such files.
The wide listing format is the most compact.

The tree listing format has a top directory followed by files and directories
preceded by one or more "|"s, which indicate the directory depth. One may
open and close directories by pressing the <cr> key while atop the directory
name.

One may make a preferred listing style your default; see g:netrw_liststyle.
As an example, by putting the following line in your .vimrc,let g:netrw_liststyle= 3

the tree style will become your default listing style.

One typical way to use the netrw tree display is to:vim .
(use i until a tree display shows)
navigate to a file
v (edit as desired in vertically split window)
ctrl-w h (to return to the netrw listing)
P (edit newly selected file in the previous window)
ctrl-w h (to return to the netrw listing)
P (edit newly selected file in the previous window)
...etc...

Associated setting variables: g:netrw_liststyle g:netrw_maxfilenamelen
 g:netrw_timefmt g:netrw_list_cmd

CHANGE FILE PERMISSION						netrw-gp {{{2

"gp" will ask you for a new permission for the file named under the cursor.
Currently, this only works for local files.

Associated setting variables: g:netrw_chgperm

CHANGING TO A BOOKMARKED DIRECTORY			netrw-gb {{{2

To change directory back to a bookmarked directory, use

	{cnt}gb

Any count may be used to reference any of the bookmarks.
Note that netrw-qb shows both bookmarks and history; to go
to a location stored in the history see netrw-u and netrw-U.

Related Topics:
	netrw-mB how to delete bookmarks
	netrw-mb how to make a bookmark
	netrw-qb how to list bookmarks

CHANGING TO A PREDECESSOR DIRECTORY		netrw-u netrw-updir {{{2

Every time you change to a new directory (new for the current session), netrw
will save the directory in a recently-visited directory history list (unless
g:netrw_dirhistmax is zero; by default, it holds ten entries). With the "u"
map, one can change to an earlier directory (predecessor). To do the
opposite, see netrw-U.

The "u" map also accepts counts to go back in the history several slots. For
your convenience, qb (see netrw-qb) lists the history number which may be
used in that count.

						.netrwhist
See g:netrw_dirhistmax for how to control the quantity of history stack
slots. The file ".netrwhist" holds history when netrw (and vim) is not
active. By default, its stored on the first directory on the user's
'runtimepath'.

Related Topics:
	netrw-U changing to a successor directory
	g:netrw_home controls where .netrwhist is kept

CHANGING TO A SUCCESSOR DIRECTORY		netrw-U netrw-downdir {{{2

With the "U" map, one can change to a later directory (successor).
This map is the opposite of the "u" map. (see netrw-u) Use the
qb map to list both the bookmarks and history. (see netrw-qb)

The "U" map also accepts counts to go forward in the history several slots.

See g:netrw_dirhistmax for how to control the quantity of history stack
slots.

CHANGING TREE TOP			netrw-ntree :Ntree netrw-gn {{{2

One may specify a new tree top for tree listings using:Ntree [dirname]

Without a "dirname", the current line is used (and any leading depth
information is elided).
With a "dirname", the specified directory name is used.

The "gn" map will take the word below the cursor and use that for
changing the top of the tree listing.

NETRW CLEAN					netrw-clean :NetrwClean {{{2

With :NetrwClean one may easily remove netrw from one's home directory;
more precisely, from the first directory on your 'runtimepath'.

With :NetrwClean!, netrw will attempt to remove netrw from all directories on
your 'runtimepath'. Of course, you have to have write/delete permissions
correct to do this.

With either form of the command, netrw will first ask for confirmation
that the removal is in fact what you want to do. If netrw doesn't have
permission to remove a file, it will issue an error message.

						netrw-gx
CUSTOMIZING BROWSING WITH A SPECIAL HANDLER	netrw-x netrw-handler {{{2
						(also see netrw_filehandler)

Certain files, such as html, gif, jpeg, (word/office) doc, etc, files, are
best seen with a special handler (ie. a tool provided with your computer's
operating system). Netrw allows one to invoke such special handlers by:* when Exploring, hit the "x" key
* when editing, hit gx with the cursor atop the special filename

	 (latter not available if the g:netrw_nogx variable exists)

Netrw determines which special handler by the following method:

 * if g:netrw_browsex_viewer exists, then it will be used to attempt to
 view files. Examples of useful settings (place into your <.vimrc>)::let g:netrw_browsex_viewer= "kfmclient exec"

 or:let g:netrw_browsex_viewer= "xdg-open"

 If g:netrw_browsex_viewer == '-', then netrwFileHandlers#Invoke() will be
 used instead (see netrw_filehandler).

 If the viewer you wish to use does not support handling of a remote URL
 directory, set g:netrw_browsex_support_remote to 0.
 * for Windows 32 or 64, the URL and FileProtocolHandler dlls are used.
 * for Gnome (with gnome-open): gnome-open is used.
 * for KDE (with kfmclient) : kfmclient is used
 * for Mac OS X : open is used.
 * otherwise the netrwFileHandler plugin is used.

The file's suffix is used by these various approaches to determine an
appropriate application to use to "handle" these files. Such things as
OpenOffice (*.sfx), visualization (*.jpg, *.gif, etc), and PostScript (.ps,.eps) can be handled.

The gx mapping extends to all buffers; apply "gx" while atop a word and netrw
will apply a special handler to it (like "x" works when in a netrw buffer).
One may also use visual mode (see visual-start) to select the text that the
special handler will use. Normally gx uses expand("<cfile>") to pick up the
text under the cursor; one may change what expand() uses via the
g:netrw_gx variable (options include "<cword>", "<cWORD>"). Note that
expand("<cfile>") depends on the 'isfname' setting. Alternatively, one may
select the text to be used by gx by making a visual selection (see
visual-block) and then pressing gx.

Associated setting variables:
	g:netrw_gx 	control how gx picks up the text under the cursor
	g:netrw_nogx 	prevent gx map while editing
	g:netrw_suppress_gx_mesg controls gx's suppression of browser messages

							netrw_filehandler

When g:netrw_browsex_viewer exists and is "-", then netrw will attempt to
handle the special file with a vim function. The "x" map applies a function
to a file, based on its extension. Of course, the handler function must exist
for it to be called!
Ex. mypgm.html x -> NFH_html("scp://user@host/some/path/mypgm.html")

	Users may write their own netrw File Handler functions to
	support more suffixes with special handling. See
	<autoload/netrwFileHandlers.vim> for examples on how to make
	file handler functions. As an example:" NFH_suffix(filename)
fun! NFH_suffix(filename)
..do something special with filename..
endfun

These functions need to be defined in some file in your .vim/plugin
(vimfiles\plugin) directory. Vim's function names may not have punctuation
characters (except for the underscore) in them. To support suffices that
contain such characters, netrw will first convert the suffix using the
following table:@ -> AT ! -> EXCLAMATION % -> PERCENT
: -> COLON = -> EQUAL ? -> QUESTION
, -> COMMA - -> MINUS ; -> SEMICOLON
$ -> DOLLAR + -> PLUS ~ -> TILDE

So, for example:file.rcs,v -> NFH_rcsCOMMAv()

If more such translations are necessary, please send me email:

with a request. (remove the embedded NOSPAM first)

Associated setting variable: g:netrw_browsex_viewer

							netrw-curdir
DELETING BOOKMARKS					netrw-mB {{{2

To delete a bookmark, use{cnt}mB

If there are marked files, then mB will remove them from the
bookmark list.

Alternatively, one may use :NetrwMB! (see netrw-:NetrwMB).:NetrwMB! [files/directories]

Related Topics:
	netrw-gb how to return (go) to a bookmark
	netrw-mb how to make a bookmark
	netrw-qb how to list bookmarks

DELETING FILES OR DIRECTORIES	netrw-delete netrw-D netrw-del {{{2

If files have not been marked with netrw-mf: (local marked file list)

 Deleting/removing files and directories involves moving the cursor to the
 file/directory to be deleted and pressing "D". Directories must be empty
 first before they can be successfully removed. If the directory is a
 softlink to a directory, then netrw will make two requests to remove the
 directory before succeeding. Netrw will ask for confirmation before doing
 the removal(s). You may select a range of lines with the "V" command
 (visual selection), and then pressing "D".

If files have been marked with netrw-mf: (local marked file list)

 Marked files (and empty directories) will be deleted; again, you'll be
 asked to confirm the deletion before it actually takes place.

A further approach is to delete files which match a pattern.

 * use :MF pattern (see netrw-:MF); then press "D".

 * use mr (see netrw-mr) which will prompt you for pattern.
 This will cause the matching files to be marked. Then,
 press "D".

Please note that only empty directories may be deleted with the "D" mapping.
Regular files are deleted with delete(), too.

The g:netrw_rm_cmd, g:netrw_rmf_cmd, and g:netrw_rmdir_cmd variables are
used to control the attempts to remove remote files and directories. The
g:netrw_rm_cmd is used with files, and its default value is:

	g:netrw_rm_cmd: ssh HOSTNAME rm

The g:netrw_rmdir_cmd variable is used to support the removal of directories.
Its default value is:

	g:netrw_rmdir_cmd: ssh HOSTNAME rmdir

If removing a directory fails with g:netrw_rmdir_cmd, netrw then will attempt
to remove it again using the g:netrw_rmf_cmd variable. Its default value is:

	g:netrw_rmf_cmd: ssh HOSTNAME rm -f

Related topics: netrw-d
Associated setting variable: g:netrw_rm_cmd g:netrw_ssh_cmd

netrw-explore netrw-hexplore netrw-nexplore netrw-pexplore
netrw-rexplore netrw-sexplore netrw-texplore netrw-vexplore netrw-lexplore
DIRECTORY EXPLORATION COMMANDS {{{2

 :[N]Explore[!] [dir]... Explore directory of current file :Explore
 :[N]Hexplore[!] [dir]... Horizontal Split & Explore :Hexplore
 :[N]Lexplore[!] [dir]... Left Explorer Toggle :Lexplore
 :[N]Sexplore[!] [dir]... Split&Explore current file's directory :Sexplore
 :[N]Vexplore[!] [dir]... Vertical Split & Explore :Vexplore
 :Texplore [dir]... Tab & Explore :Texplore
 :Rexplore ... Return to/from Explorer :Rexplore

 Used with :Explore **/pattern : (also see netrw-starstar)
 :Nexplore............. go to next matching file :Nexplore
 :Pexplore............. go to previous matching file :Pexplore

						netrw-:Explore
:Explore will open the local-directory browser on the current file's
 directory (or on directory [dir] if specified). The window will be
	 split only if the file has been modified and 'hidden' is not set,
	 otherwise the browsing window will take over that window. Normally
	 the splitting is taken horizontally.
	 Also see: netrw-:Rexplore
:Explore! is like :Explore, but will use vertical splitting.

						netrw-:Hexplore
:Hexplore [dir] does an :Explore with :belowright horizontal splitting.
:Hexplore! [dir] does an :Explore with :aboveleft horizontal splitting.

						netrw-:Lexplore
:[N]Lexplore [dir] toggles a full height Explorer window on the left hand side
	 of the current tab. It will open a netrw window on the current
	 directory if [dir] is omitted; a :Lexplore [dir] will show the
	 specified directory in the left-hand side browser display no matter
	 from which window the command is issued.

	 By default, :Lexplore will change an uninitialized g:netrw_chgwin
	 to 2; edits will thus preferentially be made in window#2.

	 The [N] specifies a g:netrw_winsize just for the new :Lexplore
	 window. That means that
	 if [N] < 0 : use N columns for the Lexplore window
	 if [N] = 0 : a normal split is made
	 if [N] > 0 : use N% of the current window will be used for the
	 new window

	 Those who like this method often also like tree style displays;
	 see g:netrw_liststyle.

:[N]Lexplore! [dir] is similar to :Lexplore, except that the full-height
	 Explorer window will open on the right hand side and an
	 uninitialized g:netrw_chgwin will be set to 1 (eg. edits will
	 preferentially occur in the leftmost window).

	 Also see: netrw-C g:netrw_browse_split g:netrw_wiw
		 netrw-p netrw-P g:netrw_chgwin
		 netrw-c-tab g:netrw_winsize

						netrw-:Sexplore
:[N]Sexplore will always split the window before invoking the local-directory
	 browser. As with Explore, the splitting is normally done
	 horizontally.
:[N]Sexplore! [dir] is like :Sexplore, but the splitting will be done vertically.

						netrw-:Texplore
:Texplore [dir] does a :tabnew before generating the browser window

						netrw-:Vexplore
:[N]Vexplore [dir] does an :Explore with :leftabove vertical splitting.
:[N]Vexplore! [dir] does an :Explore with :rightbelow vertical splitting.

The optional parameters are:

 [N]: This parameter will override g:netrw_winsize to specify the quantity of
 rows and/or columns the new explorer window should have.
 Otherwise, the g:netrw_winsize variable, if it has been specified by the
 user, is used to control the quantity of rows and/or columns new
 explorer windows should have.

 [dir]: By default, these explorer commands use the current file's directory.
 However, one may explicitly provide a directory (path) to use instead;
	ie.:Explore /some/path

						netrw-:Rexplore
:Rexplore This command is a little different from the other Explore commands
	 as it doesn't necessarily open an Explorer window.

	 Return to Explorer~
	 When one edits a file using netrw which can occur, for example,
	 when pressing <cr> while the cursor is atop a filename in a netrw
	 browser window, a :Rexplore issued while editing that file will
	 return the display to that of the last netrw browser display in
	 that window.

	 Return from Explorer~
	 Conversely, when one is editing a directory, issuing a :Rexplore
	 will return to editing the file that was last edited in that
	 window.

	 The <2-leftmouse> map (which is only available under gvim and
	 cooperative terms) does the same as :Rexplore.

Also see: g:netrw_alto g:netrw_altv g:netrw_winsize

netrw-star netrw-starpat netrw-starstar netrw-starstarpat netrw-grep
EXPLORING WITH STARS AND PATTERNS {{{2

When Explore, Sexplore, Hexplore, or Vexplore are used with one of the
following four patterns Explore generates a list of files which satisfy the
request for the local file system. These exploration patterns will not work
with remote file browsing.

 */filepat	files in current directory which satisfy filepat
 **/filepat	files in current directory or below which satisfy the
		file pattern
 *//pattern	files in the current directory which contain the
		pattern (vimgrep is used)
 **//pattern	files in the current directory or below which contain
		the pattern (vimgrep is used)

The cursor will be placed on the first file in the list. One may then
continue to go to subsequent files on that list via :Nexplore or to
preceding files on that list with :Pexplore. Explore will update the
directory and place the cursor appropriately.

A plain:Explore

will clear the explore list.

If your console or gui produces recognizable shift-up or shift-down sequences,
then you'll likely find using shift-downarrow and shift-uparrow convenient.
They're mapped by netrw as follows:

	<s-down> == Nexplore, and
	<s-up> == Pexplore.

As an example, consider
:Explore */*.c
:Nexplore
:Nexplore
:Pexplore

The status line will show, on the right hand side of the status line, a
message like "Match 3 of 20".

Associated setting variables:
	g:netrw_keepdir g:netrw_browse_split
	g:netrw_fastbrowse g:netrw_ftp_browse_reject
	g:netrw_ftp_list_cmd g:netrw_ftp_sizelist_cmd
	g:netrw_ftp_timelist_cmd g:netrw_list_cmd
	g:netrw_liststyle

DISPLAYING INFORMATION ABOUT FILE				netrw-qf {{{2

With the cursor atop a filename, pressing "qf" will reveal the file's size
and last modification timestamp. Currently this capability is only available
for local files.

EDIT FILE OR DIRECTORY HIDING LIST	netrw-ctrl-h netrw-edithide {{{2

The "<ctrl-h>" map brings up a requestor allowing the user to change the
file/directory hiding list contained in g:netrw_list_hide. The hiding list
consists of one or more patterns delimited by commas. Files and/or
directories satisfying these patterns will either be hidden (ie. not shown) or
be the only ones displayed (see netrw-a).

The "gh" mapping (see netrw-gh) quickly alternates between the usual
hiding list and the hiding of files or directories that begin with ".".

As an example,let g:netrw_list_hide= '\(^\|\s\s\)\zs\.\S\+'

Effectively, this makes the effect of a netrw-gh command the initial setting.
What it means:

	\(^\|\s\s\) : if the line begins with the following, -or-
	 two consecutive spaces are encountered
	\zs : start the hiding match now
	\. : if it now begins with a dot
	\S\+ : and is followed by one or more non-whitespace
	 characters

Associated setting variables: g:netrw_hide g:netrw_list_hide
Associated topics: netrw-a netrw-gh netrw-mh

					netrw-sort-sequence
EDITING THE SORTING SEQUENCE		netrw-S netrw-sortsequence {{{2

When "Sorted by" is name, one may specify priority via the sorting sequence
(g:netrw_sort_sequence). The sorting sequence typically prioritizes the
name-listing by suffix, although any pattern will do. Patterns are delimited
by commas. The default sorting sequence is (all one line):

For Unix:'[\/]$,\<core\%(\.\d\+\)\=,\.[a-np-z]$,\.h$,\.c$,\.cpp$,*,\.o$,\.obj$,
\.info$,\.swp$,\.bak$,\~$'

Otherwise:'[\/]$,\.[a-np-z]$,\.h$,\.c$,\.cpp$,*,\.o$,\.obj$,\.info$,
\.swp$,\.bak$,\~$'

The lone * is where all filenames not covered by one of the other patterns
will end up. One may change the sorting sequence by modifying the
g:netrw_sort_sequence variable (either manually or in your <.vimrc>) or by
using the "S" map.

Related topics: netrw-s netrw-S
Associated setting variables: g:netrw_sort_sequence g:netrw_sort_options

EXECUTING FILE UNDER CURSOR VIA SYSTEM()			netrw-X {{{2

Pressing X while the cursor is atop an executable file will yield a prompt
using the filename asking for any arguments. Upon pressing a [return], netrw
will then call system() with that command and arguments. The result will be
displayed by :echomsg, and so :messages will repeat display of the result.
Ansi escape sequences will be stripped out.

See cmdline-window for directions for more on how to edit the arguments.

FORCING TREATMENT AS A FILE OR DIRECTORY	netrw-gd netrw-gf {{{2

Remote symbolic links (ie. those listed via ssh or ftp) are problematic
in that it is difficult to tell whether they link to a file or to a
directory.

To force treatment as a file: usegf

To force treatment as a directory: usegd

GOING UP							netrw-- {{{2

To go up a directory, press "-" or press the <cr> when atop the ../ directory
entry in the listing.

Netrw will use the command in g:netrw_list_cmd to perform the directory
listing operation after changing HOSTNAME to the host specified by the
user-prpvided url. By default netrw provides the command as:ssh HOSTNAME ls -FLa

where the HOSTNAME becomes the [user@]hostname as requested by the attempt to
read. Naturally, the user may override this command with whatever is
preferred. The NetList function which implements remote browsing
expects that directories will be flagged by a trailing slash.

HIDING FILES OR DIRECTORIES			netrw-a netrw-hiding {{{2

Netrw's browsing facility allows one to use the hiding list in one of three
ways: ignore it, hide files which match, and show only those files which
match.

If no files have been marked via netrw-mf:

The "a" map allows the user to cycle through the three hiding modes.

The g:netrw_list_hide variable holds a comma delimited list of patterns
based on regular expressions (ex. ^.*\.obj$,^\.) which specify the hiding list.
(also see netrw-ctrl-h) To set the hiding list, use the <c-h> map. As an
example, to hide files which begin with a ".", one may use the <c-h> map to
set the hiding list to '^\..*' (or one may put let g:netrw_list_hide= '^\..*'
in one's <.vimrc>). One may then use the "a" key to show all files, hide
matching files, or to show only the matching files.

	Example: \.[ch]$
		This hiding list command will hide/show all *.c and *.h files.

	Example: \.c$,\.h$
		This hiding list command will also hide/show all *.c and *.h
		files.

Don't forget to use the "a" map to select the mode (normal/hiding/show) you
want!

If files have been marked using netrw-mf, then this command will:

 if showing all files or non-hidden files:
 modify the g:netrw_list_hide list by appending the marked files to it
 and showing only non-hidden files.

 else if showing hidden files only:
 modify the g:netrw_list_hide list by removing the marked files from it
 and showing only non-hidden files.
 endif

					netrw-gh netrw-hide
As a quick shortcut, one may pressgh

to toggle between hiding files which begin with a period (dot) and not hiding
them.

Associated setting variables: g:netrw_list_hide g:netrw_hide
Associated topics: netrw-a netrw-ctrl-h netrw-mh

					netrw-gitignore
Netrw provides a helper function 'netrw_gitignore#Hide()' that, when used with
g:netrw_list_hide automatically hides all git-ignored files.

'netrw_gitignore#Hide' searches for patterns in the following files:'./.gitignore'
'./.git/info/exclude'
global gitignore file: `git config --global core.excludesfile`
system gitignore file: `git config --system core.excludesfile`

Files that do not exist, are ignored.
Git-ignore patterns are taken from existing files, and converted to patterns for
hiding files. For example, if you had '*.log' in your '.gitignore' file, it
would be converted to '.*\.log'.

To use this function, simply assign its output to g:netrw_list_hide option.Example: let g:netrw_list_hide= netrw_gitignore#Hide()
 Git-ignored files are hidden in Netrw.
Example: let g:netrw_list_hide= netrw_gitignore#Hide('my_gitignore_file')
 Function can take additional files with git-ignore patterns.
Example: let g:netrw_list_hide= netrw_gitignore#Hide() .. '.*\.swp$'
 Combining 'netrw_gitignore#Hide' with custom patterns.

IMPROVING BROWSING			netrw-listhack netrw-ssh-hack {{{2

Especially with the remote directory browser, constantly entering the password
is tedious.

For Linux/Unix systems, the book "Linux Server Hacks - 100 industrial strength
tips & tools" by Rob Flickenger (O'Reilly, ISBN 0-596-00461-3) gives a tip
for setting up no-password ssh and scp and discusses associated security
issues. It used to be available at http://hacks.oreilly.com/pub/h/66 ,
but apparently that address is now being redirected to some "hackzine".
I'll attempt a summary based on that article and on a communication from
Ben Schmidt:

	1. Generate a public/private key pair on the local machine
	 (ssh client):ssh-keygen -t rsa
(saving the file in ~/.ssh/id_rsa as prompted)

	2. Just hit the <CR> when asked for passphrase (twice) for no
	 passphrase. If you do use a passphrase, you will also need to use
	 ssh-agent so you only have to type the passphrase once per session.
	 If you don't use a passphrase, simply logging onto your local
	 computer or getting access to the keyfile in any way will suffice
	 to access any ssh servers which have that key authorized for login.

	3. This creates two files:~/.ssh/id_rsa
~/.ssh/id_rsa.pub

	4. On the target machine (ssh server):cd
mkdir -p .ssh
chmod 0700 .ssh

	5. On your local machine (ssh client): (one line)ssh {serverhostname}
 cat '>>' '~/.ssh/authorized_keys2' < ~/.ssh/id_rsa.pub

	 or, for OpenSSH, (one line)ssh {serverhostname}
 cat '>>' '~/.ssh/authorized_keys' < ~/.ssh/id_rsa.pub

You can test it out withssh {serverhostname}

and you should be log onto the server machine without further need to type
anything.

If you decided to use a passphrase, do:ssh-agent $SHELL
ssh-add
ssh {serverhostname}

You will be prompted for your key passphrase when you use ssh-add, but not
subsequently when you use ssh. For use with vim, you can usessh-agent vim

and, when next within vim, use:!ssh-add

Alternatively, you can apply ssh-agent to the terminal you're planning on
running vim in:ssh-agent xterm &

and do ssh-add whenever you need.

For Windows, folks on the vim mailing list have mentioned that Pageant helps
with avoiding the constant need to enter the password.

Kingston Fung wrote about another way to avoid constantly needing to enter
passwords:

 In order to avoid the need to type in the password for scp each time, you
 provide a hack in the docs to set up a non password ssh account. I found a
 better way to do that: I can use a regular ssh account which uses a
 password to access the material without the need to key-in the password
 each time. It's good for security and convenience. I tried ssh public key
 authorization + ssh-agent, implementing this, and it works! Here are two
 links with instructions:

 http://www.ibm.com/developerworks/library/l-keyc2/
 http://sial.org/howto/openssh/publickey-auth/

 Ssh hints:

	Thomer Gil has provided a hint on how to speed up netrw+ssh:
	 http://thomer.com/howtos/netrw_ssh.html

	Alex Young has several hints on speeding ssh up:
	 http://usevim.com/2012/03/16/editing-remote-files/

LISTING BOOKMARKS AND HISTORY		netrw-qb netrw-listbookmark {{{2

Pressing "qb" (query bookmarks) will list both the bookmarked directories and
directory traversal history.

Related Topics:
	netrw-gb how to return (go) to a bookmark
	netrw-mb how to make a bookmark
	netrw-mB how to delete bookmarks
	netrw-u change to a predecessor directory via the history stack
	netrw-U change to a successor directory via the history stack

MAKING A NEW DIRECTORY					netrw-d {{{2

With the "d" map one may make a new directory either remotely (which depends
on the global variable g:netrw_mkdir_cmd) or locally (which depends on the
global variable g:netrw_localmkdir). Netrw will issue a request for the new
directory's name. A bare <CR> at that point will abort the making of the
directory. Attempts to make a local directory that already exists (as either
a file or a directory) will be detected, reported on, and ignored.

Related topics: netrw-D
Associated setting variables:	g:netrw_localmkdir g:netrw_mkdir_cmd
				g:netrw_remote_mkdir netrw-%

MAKING THE BROWSING DIRECTORY THE CURRENT DIRECTORY	netrw-cd {{{2

By default, g:netrw_keepdir is 1. This setting means that the current
directory will not track the browsing directory. (done for backwards
compatibility with v6's file explorer).

Setting g:netrw_keepdir to 0 tells netrw to make vim's current directory
track netrw's browsing directory.

However, given the default setting for g:netrw_keepdir of 1 where netrw
maintains its own separate notion of the current directory, in order to make
the two directories the same, use the "cd" map (type cd). That map will
set Vim's notion of the current directory to netrw's current browsing
directory.

netrw-cd : This map's name was changed from "c" to cd (see netrw-cd).
 This change was done to allow for netrw-cb and netrw-cB maps.

Associated setting variable: g:netrw_keepdir

MARKING FILES					netrw-:MF	netrw-mf {{{2
	(also see netrw-mr)

Netrw provides several ways to mark files:

	* One may mark files with the cursor atop a filename and
	 then pressing "mf".

	* With gvim, in addition one may mark files with
	 <s-leftmouse>. (see netrw-mouse)

	* One may use the :MF command, which takes a list of
	 files (for local directories, the list may include
	 wildcards -- see glob()):MF *.c

	 (Note that :MF uses <f-args> to break the line
	 at spaces)

	* Mark files using the argument-list (netrw-mA)

	* Mark files based upon a location-list (netrw-qL)

	* Mark files based upon the quickfix list (netrw-qF)
	 (quickfix-error-lists)

The following netrw maps make use of marked files:

 netrw-a 	Hide marked files/directories
 netrw-D 	Delete marked files/directories
 netrw-ma 	Move marked files' names to arglist
 netrw-mA 	Move arglist filenames to marked file list
 netrw-mb 	Append marked files to bookmarks
 netrw-mB 	Delete marked files from bookmarks
 netrw-mc 	Copy marked files to target
 netrw-md 	Apply vimdiff to marked files
 netrw-me 	Edit marked files
 netrw-mF 	Unmark marked files
 netrw-mg 	Apply vimgrep to marked files
 netrw-mm 	Move marked files to target
 netrw-ms 	Netrw will source marked files
 netrw-mt 	Set target for netrw-mm and netrw-mc
 netrw-mT 	Generate tags using marked files
 netrw-mv 	Apply vim command to marked files
 netrw-mx 	Apply shell command to marked files
 netrw-mX 	Apply shell command to marked files, en bloc
 netrw-mz 	Compress/Decompress marked files
 netrw-O 	Obtain marked files
 netrw-R 	Rename marked files

One may unmark files one at a time the same way one marks them; ie. place
the cursor atop a marked file and press "mf". This process also works
with <s-leftmouse> using gvim. One may unmark all files by pressing
"mu" (see netrw-mu).

Marked files are highlighted using the "netrwMarkFile" highlighting group,
which by default is linked to "Identifier" (see Identifier under
group-name). You may change the highlighting group by putting something
likehighlight clear netrwMarkFile
hi link netrwMarkFile ..whatever..

into $HOME/.vim/after/syntax/netrw.vim .

If the mouse is enabled and works with your vim, you may use <s-leftmouse> to
mark one or more files. You may mark multiple files by dragging the shifted
leftmouse. (see netrw-mouse)

			markfilelist global_markfilelist local_markfilelist
All marked files are entered onto the global marked file list; there is only
one such list. In addition, every netrw buffer also has its own buffer-local
marked file list; since netrw buffers are associated with specific
directories, this means that each directory has its own local marked file
list. The various commands which operate on marked files use one or the other
of the marked file lists.

Known Problem: if one is using tree mode (g:netrw_liststyle) and several
directories have files with the same name, then marking such a file will
result in all such files being highlighted as if they were all marked. The
markfilelist, however, will only have the selected file in it. This problem
is unlikely to be fixed.

UNMARKING FILES							netrw-mF {{{2
	(also see netrw-mf, netrw-mu)

The "mF" command will unmark all files in the current buffer. One may also use
mf (netrw-mf) on a specific, already marked, file to unmark just that file.

MARKING FILES BY LOCATION LIST					netrw-qL {{{2
	(also see netrw-mf)

One may convert location-lists into a marked file list using "qL".
You may then proceed with commands such as me (netrw-me) to edit them.

MARKING FILES BY QUICKFIX LIST					netrw-qF {{{2
	(also see netrw-mf)

One may convert quickfix-error-lists into a marked file list using "qF".
You may then proceed with commands such as me (netrw-me) to edit them.
Quickfix error lists are generated, for example, by calls to :vimgrep.

MARKING FILES BY REGULAR EXPRESSION				netrw-mr {{{2
	(also see netrw-mf)

One may also mark files by pressing "mr"; netrw will then issue a prompt,
"Enter regexp: ". You may then enter a shell-style regular expression such
as *.c$ (see glob()). For remote systems, glob() doesn't work -- so netrw
converts "*" into ".*" (see regexp) and marks files based on that. In the
future I may make it possible to use regexps instead of glob()-style
expressions (yet-another-option).

See cmdline-window for directions on more on how to edit the regular
expression.

MARKED FILES, ARBITRARY VIM COMMAND				netrw-mv {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the local marked-file list)

The "mv" map causes netrw to execute an arbitrary vim command on each file on
the local marked file list, individually:

	* 1split
	* sil! keepalt e file
	* run vim command
	* sil! keepalt wq!

A prompt, "Enter vim command: ", will be issued to elicit the vim command you
wish used. See cmdline-window for directions for more on how to edit the
command.

MARKED FILES, ARBITRARY SHELL COMMAND				netrw-mx {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the local marked-file list)

Upon activation of the "mx" map, netrw will query the user for some (external)
command to be applied to all marked files. All "%"s in the command will be
substituted with the name of each marked file in turn. If no "%"s are in the
command, then the command will be followed by a space and a marked filename.

Example:
	(mark files)
	mx
	Enter command: cat

	The result is a series of shell commands:
	cat 'file1'
	cat 'file2'
	...

MARKED FILES, ARBITRARY SHELL COMMAND, EN BLOC			netrw-mX {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked-file list)

Upon activation of the 'mX' map, netrw will query the user for some (external)
command to be applied to all marked files on the global marked file list. The
"en bloc" means that one command will be executed on all the files at once:command files

This approach is useful, for example, to select files and make a tarball:(mark files)
mX
Enter command: tar cf mynewtarball.tar

The command that will be run with this example:

	tar cf mynewtarball.tar 'file1' 'file2' ...

MARKED FILES: ARGUMENT LIST				netrw-ma netrw-mA
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked-file list)

Using ma, one moves filenames from the marked file list to the argument list.
Using mA, one moves filenames from the argument list to the marked file list.

See Also: netrw-cb netrw-cB netrw-qF argument-list :args

MARKED FILES: BUFFER LIST				netrw-cb netrw-cB
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked-file list)

Using cb, one moves filenames from the marked file list to the buffer list.
Using cB, one copies filenames from the buffer list to the marked file list.

See Also: netrw-ma netrw-mA netrw-qF buffer-list :buffers

MARKED FILES: COMPRESSION AND DECOMPRESSION		netrw-mz {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the local marked file list)

If any marked files are compressed, then "mz" will decompress them.
If any marked files are decompressed, then "mz" will compress them
using the command specified by g:netrw_compress; by default,
that's "gzip".

For decompression, netrw uses a Dictionary of suffices and their
associated decompressing utilities; see g:netrw_decompress.

Remember that one can mark multiple files by regular expression
(see netrw-mr); this is particularly useful to facilitate compressing and
decompressing a large number of files.

Associated setting variables: g:netrw_compress g:netrw_decompress

MARKED FILES: COPYING						netrw-mc {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (Uses the global marked file list)

Select a target directory with mt (netrw-mt). Then change directory,
select file(s) (see netrw-mf), and press "mc". The copy is done
from the current window (where one does the mf) to the target.

If one does not have a target directory set with netrw-mt, then netrw
will query you for a directory to copy to.

One may also copy directories and their contents (local only) to a target
directory.

Associated setting variables:
	g:netrw_localcopycmd 		g:netrw_localcopycmdopt
	g:netrw_localcopydircmd 	g:netrw_localcopydircmdopt
	g:netrw_ssh_cmd

MARKED FILES: DIFF						netrw-md {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked file list)

Use vimdiff to visualize difference between selected files (two or
three may be selected for this). Uses the global marked file list.

MARKED FILES: EDITING						netrw-me {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked file list)

The "me" command will place the marked files on the arglist and commence
editing them. One may return the to explorer window with :Rexplore.
(use :n and :p to edit next and previous files in the arglist)

MARKED FILES: GREP						netrw-mg {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked file list)

The "mg" command will apply :vimgrep to the marked files.
The command will ask for the requested pattern; one may then enter:/pattern/[g][j]
! /pattern/[g][j]
pattern

With /pattern/, editing will start with the first item on the quickfix list
that vimgrep sets up (see :copen, :cnext, :cprevious, :cclose). The :vimgrep
command is in use, so without 'g' each line is added to quickfix list only
once; with 'g' every match is included.

With /pattern/j, "mg" will winnow the current marked file list to just those
marked files also possessing the specified pattern. Thus, one may usemr ...file-pattern...
mg /pattern/j

to have a marked file list satisfying the file-pattern but also restricted to
files containing some desired pattern.

MARKED FILES: HIDING AND UNHIDING BY SUFFIX			netrw-mh {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the local marked file list)

The "mh" command extracts the suffices of the marked files and toggles their
presence on the hiding list. Please note that marking the same suffix
this way multiple times will result in the suffix's presence being toggled
for each file (so an even quantity of marked files having the same suffix
is the same as not having bothered to select them at all).

Related topics: netrw-a g:netrw_list_hide

MARKED FILES: MOVING						netrw-mm {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked file list)

WARNING: moving files is more dangerous than copying them.
	A file being moved is first copied and then deleted; if the
	copy operation fails and the delete succeeds, you will lose
	the file. Either try things out with unimportant files
	first or do the copy and then delete yourself using mc and D.
	Use at your own risk!

Select a target directory with mt (netrw-mt). Then change directory,
select file(s) (see netrw-mf), and press "mm". The move is done
from the current window (where one does the mf) to the target.

Associated setting variable: g:netrw_localmovecmd g:netrw_ssh_cmd

MARKED FILES: SOURCING						netrw-ms {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the local marked file list)

With "ms", netrw will source the marked files (using vim's :source command)

MARKED FILES: SETTING THE TARGET DIRECTORY			netrw-mt {{{2
 (See netrw-mf and netrw-mr for how to mark files)

Set the marked file copy/move-to target (see netrw-mc and netrw-mm):

 * If the cursor is atop a file name, then the netrw window's currently
 displayed directory is used for the copy/move-to target.

 * Also, if the cursor is in the banner, then the netrw window's currently
 displayed directory is used for the copy/move-to target.
 Unless the target already is the current directory. In which case,
 typing "mf" clears the target.

 * However, if the cursor is atop a directory name, then that directory is
 used for the copy/move-to target

 * One may use the :MT [directory] command to set the target	netrw-:MT
 This command uses <q-args>, so spaces in the directory name are
 permitted without escaping.

 * With mouse-enabled vim or with gvim, one may select a target by using
 <c-leftmouse>

There is only one copy/move-to target at a time in a vim session; ie. the
target is a script variable (see s:var) and is shared between all netrw
windows (in an instance of vim).

When using menus and gvim, netrw provides a "Targets" entry which allows one
to pick a target from the list of bookmarks and history.

Related topics:
 Marking Files......................................|netrw-mf|
 Marking Files by Regular Expression................|netrw-mr|
 Marked Files: Target Directory Using Bookmarks.....|netrw-Tb|
 Marked Files: Target Directory Using History.......|netrw-Th|

MARKED FILES: TAGGING						netrw-mT {{{2
	 (See netrw-mf and netrw-mr for how to mark files)
		 (uses the global marked file list)

The "mT" mapping will apply the command in g:netrw_ctags (by default, it is
"ctags") to marked files. For remote browsing, in order to create a tags file
netrw will use ssh (see g:netrw_ssh_cmd), and so ssh must be available for
this to work on remote systems. For your local system, see ctags on how to
get a version. I myself use hdrtags, currently available at
http://www.drchip.org/astronaut/src/index.html , and havelet g:netrw_ctags= "hdrtag"

in my <.vimrc>.

When a remote set of files are tagged, the resulting tags file is "obtained";
ie. a copy is transferred to the local system's directory. The now local tags
file is then modified so that one may use it through the network. The
modification made concerns the names of the files in the tags; each filename is
preceded by the netrw-compatible URL used to obtain it. When one subsequently
uses one of the go to tag actions (tags), the URL will be used by netrw to
edit the desired file and go to the tag.

Associated setting variables: g:netrw_ctags g:netrw_ssh_cmd

MARKED FILES: TARGET DIRECTORY USING BOOKMARKS		netrw-Tb {{{2

Sets the marked file copy/move-to target.

The netrw-qb map will give you a list of bookmarks (and history).
One may choose one of the bookmarks to become your marked file
target by using [count]Tb (default count: 1).

Related topics:
 Copying files to target............................|netrw-mc|
 Listing Bookmarks and History......................|netrw-qb|
 Marked Files: Setting The Target Directory.........|netrw-mt|
 Marked Files: Target Directory Using History.......|netrw-Th|
 Marking Files......................................|netrw-mf|
 Marking Files by Regular Expression................|netrw-mr|
 Moving files to target.............................|netrw-mm|

MARKED FILES: TARGET DIRECTORY USING HISTORY			netrw-Th {{{2

Sets the marked file copy/move-to target.

The netrw-qb map will give you a list of history (and bookmarks).
One may choose one of the history entries to become your marked file
target by using [count]Th (default count: 0; ie. the current directory).

Related topics:
 Copying files to target............................|netrw-mc|
 Listing Bookmarks and History......................|netrw-qb|
 Marked Files: Setting The Target Directory.........|netrw-mt|
 Marked Files: Target Directory Using Bookmarks.....|netrw-Tb|
 Marking Files......................................|netrw-mf|
 Marking Files by Regular Expression................|netrw-mr|
 Moving files to target.............................|netrw-mm|

MARKED FILES: UNMARKING						netrw-mu {{{2
 (See netrw-mf, netrw-mF)

The "mu" mapping will unmark all currently marked files. This command differs
from "mF" as the latter only unmarks files in the current directory whereas
"mu" will unmark global and all buffer-local marked files.
(see netrw-mF)

				netrw-browser-settings
NETRW BROWSER VARIABLES		netrw-browser-options netrw-browser-var {{{2

(if you're interested in the netrw file transfer settings, see netrw-options
 and netrw-protocol)

The <netrw.vim> browser provides settings in the form of variables which
you may modify; by placing these settings in your <.vimrc>, you may customize
your browsing preferences. (see also: netrw-settings)
--- -----------
Var Explanation
--- -----------

 g:netrw_altfile 		some like CTRL-^ to return to the last
				edited file. Choose that by setting this
				parameter to 1.
				Others like CTRL-^ to return to the
				netrw browsing buffer. Choose that by setting
				this parameter to 0.
				 default: =0

 g:netrw_alto 		change from above splitting to below splitting
				by setting this variable (see netrw-o)
				 default: =&sb (see 'sb')

 g:netrw_altv 		change from left splitting to right splitting
				by setting this variable (see netrw-v)
				 default: =&spr (see 'spr')

 g:netrw_banner 		enable/suppress the banner
				=0: suppress the banner
				=1: banner is enabled (default)

 g:netrw_bannerbackslash 	if this variable exists and is not zero, the
				banner will be displayed with backslashes
				rather than forward slashes.

 g:netrw_browse_split 	when browsing, <cr> will open the file by:
				=0: re-using the same window (default)
				=1: horizontally splitting the window first
				=2: vertically splitting the window first
				=3: open file in new tab
				=4: act like "P" (ie. open previous window)
				 Note that g:netrw_preview may be used
				 to get vertical splitting instead of
				 horizontal splitting.
				=[servername,tab-number,window-number]
				 Given a List such as this, a remote server
				 named by the "servername" will be used for
				 editing. It will also use the specified tab
				 and window numbers to perform editing
				 (see clientserver, netrw-ctrl-r)
				This option does not affect the production of
				:Lexplore windows.

				Related topics:
				 g:netrw_alto 	g:netrw_altv
				 netrw-C 		netrw-cr
				 netrw-ctrl-r

 g:netrw_browsex_viewer 	specify user's preference for a viewer:"kfmclient exec"
"gnome-open"

				If"-"

				is used, then netrwFileHandler() will look for
				a script/function to handle the given
				extension. (see netrw_filehandler).

 g:netrw_browsex_support_remote
				specify if the specified viewer supports a
				remote URL. (see netrw-handler).

 g:netrw_chgperm 		Unix/Linux: "chmod PERM FILENAME"
				Windows: "cacls FILENAME /e /p PERM"
				Used to change access permission for a file.

 g:netrw_clipboard 		=1
				By default, netrw will attempt to insure that
				the clipboard's values will remain unchanged.
				However, some users report that they have
				speed problems with this; consequently, this
				option, when set to zero, lets such users
				prevent netrw from saving and restoring the
				clipboard (the latter is done only as needed).
				That means that if the clipboard is changed
				(inadvertently) by normal netrw operation that
				it will not be restored to its prior state.

 g:netrw_compress 		="gzip"
				Will compress marked files with this
				command

 g:Netrw_corehandler 		Allows one to specify something additional
				to do when handling <core> files via netrw's
				browser's "x" command (see netrw-x). If
				present, g:Netrw_corehandler specifies
				either one or more function references
				(see Funcref). (the capital g:Netrw...
				is required its holding a function reference)

 g:netrw_ctags 		="ctags"
				The default external program used to create
				tags

 g:netrw_cursor 		= 2 (default)
				This option controls the use of the
				'cursorline' (cul) and 'cursorcolumn'
				(cuc) settings by netrw:

				Value Thin-Long-Tree Wide
				 =0 u-cul u-cuc u-cul u-cuc
				 =1 u-cul u-cuc cul u-cuc
				 =2 cul u-cuc cul u-cuc
				 =3 cul u-cuc cul cuc
				 =4 cul cuc cul cuc
				 =5 U-cul U-cuc U-cul U-cuc
				 =6 U-cul U-cuc cul U-cuc
				 =7 cul U-cuc cul U-cuc
				 =8 cul U-cuc cul cuc

				Where
				 u-cul : user's 'cursorline' initial setting used
				 u-cuc : user's 'cursorcolumn' initial setting used
				 U-cul : user's 'cursorline' current setting used
				 U-cuc : user's 'cursorcolumn' current setting used
				 cul : 'cursorline' will be locally set
				 cuc : 'cursorcolumn' will be locally set

				 The "initial setting" means the values of
				 the 'cuc' and 'cul' settings in effect when
				 netrw last saw g:netrw_cursor >= 5 or when
				 netrw was initially run.

 g:netrw_decompress 		= { ".gz" : "gunzip" ,
				 ".bz2" : "bunzip2" ,
				 ".zip" : "unzip" ,
				 ".tar" : "tar -xf"}
				 A dictionary mapping suffices to
				 decompression programs.

 g:netrw_dirhistmax =10: controls maximum quantity of past
 history. May be zero to suppress
				 history.
				 (related: netrw-qb netrw-u netrw-U)

 g:netrw_dynamic_maxfilenamelen =32: enables dynamic determination of
				 g:netrw_maxfilenamelen, which affects
				 local file long listing.

 g:netrw_errorlvl 		=0: error levels greater than or equal to
				 this are permitted to be displayed
				 0: notes
				 1: warnings
				 2: errors

 g:netrw_fastbrowse 		=0: slow speed directory browsing;
				 never re-uses directory listings;
				 always obtains directory listings.
				=1: medium speed directory browsing;
				 re-use directory listings only
				 when remote directory browsing.
				 (default value)
				=2: fast directory browsing;
				 only obtains directory listings when the
				 directory hasn't been seen before
				 (or netrw-ctrl-l is used).

				Fast browsing retains old directory listing
				buffers so that they don't need to be
				re-acquired. This feature is especially
				important for remote browsing. However, if
				a file is introduced or deleted into or from
				such directories, the old directory buffer
				becomes out-of-date. One may always refresh
				such a directory listing with netrw-ctrl-l.
				This option gives the user the choice of
				trading off accuracy (ie. up-to-date listing)
				versus speed.

 g:netrw_ffkeep 		(default: doesn't exist)
				If this variable exists and is zero, then
				netrw will not do a save and restore for
				'fileformat'.

 g:netrw_fname_escape 	=' ?&;%'
				Used on filenames before remote reading/writing

 g:netrw_ftp_browse_reject 	ftp can produce a number of errors and warnings
				that can show up as "directories" and "files"
				in the listing. This pattern is used to
				remove such embedded messages. By default its
				value is:
				 '^total\s\+\d\+$\|
				 ^Trying\s\+\d\+.*$\|
				 ^KERBEROS_V\d rejected\|
				 ^Security extensions not\|
				 No such file\|
				 : connect to address [0-9a-fA-F:]*
				 : No route to host$'

 g:netrw_ftp_list_cmd 	options for passing along to ftp for directory
				listing. Defaults:
				 unix or g:netrw_cygwin set: : "ls -lF"
				 otherwise "dir"

 g:netrw_ftp_sizelist_cmd 	options for passing along to ftp for directory
				listing, sorted by size of file.
				Defaults:
				 unix or g:netrw_cygwin set: : "ls -slF"
				 otherwise "dir"

 g:netrw_ftp_timelist_cmd 	options for passing along to ftp for directory
				listing, sorted by time of last modification.
				Defaults:
				 unix or g:netrw_cygwin set: : "ls -tlF"
				 otherwise "dir"

 g:netrw_glob_escape 		='[]*?`{~$' (unix)
				='[]*?`{$' (windows
				These characters in directory names are
				escaped before applying glob()

 g:netrw_gx 			="<cfile>"
				This option controls how gx (netrw-gx) picks
				up the text under the cursor. See expand()
				for possibilities.

 g:netrw_hide 		Controlled by the "a" map (see netrw-a)
				=0 : show all
				=1 : show not-hidden files
				=2 : show hidden files only
				 default: =1

 g:netrw_home 		The home directory for where bookmarks and
				history are saved (as .netrwbook and
				.netrwhist).
				Netrw uses expand() on the string.
				 default: stdpath("data") (see stdpath())

 g:netrw_keepdir 		=1 (default) keep current directory immune from
				 the browsing directory.
				=0 keep the current directory the same as the
				 browsing directory.
				The current browsing directory is contained in
				b:netrw_curdir (also see netrw-cd)

 g:netrw_keepj 		="keepj" (default) netrw attempts to keep the
				 :jumps table unaffected.
				="" netrw will not use :keepjumps with
					 exceptions only for the
					 saving/restoration of position.

 g:netrw_list_cmd 		command for listing remote directories
				 default: (if ssh is executable)
				 "ssh HOSTNAME ls -FLa"

 g:netrw_list_cmd_options 	If this variable exists, then its contents are
				appended to the g:netrw_list_cmd. For
				example, use "2>/dev/null" to get rid of banner
				messages on unix systems.

 g:netrw_liststyle 		Set the default listing style:
 = 0: thin listing (one file per line)
 = 1: long listing (one file per line with time
				 stamp information and file size)
				= 2: wide listing (multiple files in columns)
				= 3: tree style listing

 g:netrw_list_hide 		comma-separated pattern list for hiding files
				Patterns are regular expressions (see regexp)
				There's some special support for git-ignore
				files: you may add the output from the helper
				function 'netrw_gitignore#Hide() automatically
				hiding all gitignored files.
				For more details see netrw-gitignore.
				 default: ""

				Examples:let g:netrw_list_hide= '.*\.swp$'
let g:netrw_list_hide= netrw_gitignore#Hide() .. '.*\.swp$'

 g:netrw_localcopycmd 	="cp" Linux/Unix/MacOS/Cygwin
				=expand("$COMSPEC") Windows
				Copies marked files (netrw-mf) to target
				directory (netrw-mt, netrw-mc)

 g:netrw_localcopycmdopt 	='' Linux/Unix/MacOS/Cygwin
				=' \c copy' Windows
				Options for the g:netrw_localcopycmd

 g:netrw_localcopydircmd 	="cp" Linux/Unix/MacOS/Cygwin
				=expand("$COMSPEC") Windows
				Copies directories to target directory.
				(netrw-mc, netrw-mt)

 g:netrw_localcopydircmdopt 	=" -R" Linux/Unix/MacOS/Cygwin
				=" /c xcopy /e /c /h/ /i /k" Windows
				Options for g:netrw_localcopydircmd

 g:netrw_localmkdir 		="mkdir" Linux/Unix/MacOS/Cygwin
				=expand("$COMSPEC") Windows
 command for making a local directory

 g:netrw_localmkdiropt 	="" Linux/Unix/MacOS/Cygwin
				=" /c mkdir" Windows
				Options for g:netrw_localmkdir

 g:netrw_localmovecmd 	="mv" Linux/Unix/MacOS/Cygwin
				=expand("$COMSPEC") Windows
				Moves marked files (netrw-mf) to target
				directory (netrw-mt, netrw-mm)

 g:netrw_localmovecmdopt 	="" Linux/Unix/MacOS/Cygwin
				=" /c move" Windows
				Options for g:netrw_localmovecmd

 g:netrw_maxfilenamelen 	=32 by default, selected so as to make long
				 listings fit on 80 column displays.
				If your screen is wider, and you have file
				or directory names longer than 32 bytes,
				you may set this option to keep listings
				columnar.

 g:netrw_mkdir_cmd 		command for making a remote directory
				via ssh (also see g:netrw_remote_mkdir)
				 default: "ssh USEPORT HOSTNAME mkdir"

 g:netrw_mousemaps 		 =1 (default) enables mouse buttons while
				 browsing to:
				 leftmouse : open file/directory
				 shift-leftmouse : mark file
				 middlemouse : same as P
				 rightmouse : remove file/directory
				=0: disables mouse maps

 g:netrw_nobeval 		doesn't exist (default)
				If this variable exists, then balloon
				evaluation will be suppressed
				(see 'ballooneval')

 g:netrw_sizestyle 		not defined: actual bytes (default)
				="b" : actual bytes (default)
				="h" : human-readable (ex. 5k, 4m, 3g)
				 uses 1000 base
				="H" : human-readable (ex. 5K, 4M, 3G)
				 uses 1024 base
				The long listing (netrw-i) and query-file
				maps (netrw-qf) will display file size
				using the specified style.

 g:netrw_usetab 		if this variable exists and is non-zero, then
				the <tab> map supporting shrinking/expanding a
				Lexplore or netrw window will be enabled.
				(see netrw-c-tab)

 g:netrw_remote_mkdir 	command for making a remote directory
				via ftp (also see g:netrw_mkdir_cmd)
				 default: "mkdir"

 g:netrw_retmap 		if it exists and is set to one, then:
				 * if in a netrw-selected file, AND
				 * no normal-mode <2-leftmouse> mapping exists,
				then the <2-leftmouse> will be mapped for easy
				return to the netrw browser window.
				 example: click once to select and open a file,
				 double-click to return.

				Note that one may instead choose to:
				 * let g:netrw_retmap= 1, AND
				 * nmap <silent> YourChoice <Plug>NetrwReturn
				and have another mapping instead of
				<2-leftmouse> to invoke the return.

				You may also use the :Rexplore command to do
				the same thing.

				 default: =0

 g:netrw_rm_cmd 		command for removing remote files
				 default: "ssh USEPORT HOSTNAME rm"

 g:netrw_rmdir_cmd 		command for removing remote directories
				 default: "ssh USEPORT HOSTNAME rmdir"

 g:netrw_rmf_cmd 		command for removing remote softlinks
				 default: "ssh USEPORT HOSTNAME rm -f"

 g:netrw_servername 		use this variable to provide a name for
				netrw-ctrl-r to use for its server.
				 default: "NETRWSERVER"

 g:netrw_sort_by 		sort by "name", "time", "size", or
				"exten".
				 default: "name"

 g:netrw_sort_direction 	sorting direction: "normal" or "reverse"
				 default: "normal"

 g:netrw_sort_options 	sorting is done using :sort; this
				variable's value is appended to the
				sort command. Thus one may ignore case,
				for example, with the following in your
				.vimrc:let g:netrw_sort_options="i"

				 default: ""

 g:netrw_sort_sequence 	when sorting by name, first sort by the
				comma-separated pattern sequence. Note that
				any filigree added to indicate filetypes
				should be accounted for in your pattern.
				 default: '[\/]$,,\.bak$,\.o$,\.h$,
				 \.info$,\.swp$,\.obj$'

 g:netrw_special_syntax 	If true, then certain files will be shown
				using special syntax in the browser:

					netrwBak : *.bak
					netrwCompress: *.gz *.bz2 *.Z *.zip
					netrwCoreDump: core.\d\+
					netrwData : *.dat
					netrwDoc : .doc,.txt,*.pdf,
					 .pdf,.docx
					netrwHdr : *.h
					netrwLex : *.l *.lex
					netrwLib : *.a *.so *.lib *.dll
					netrwMakefile: [mM]akefile *.mak
					netrwObj : *.o *.obj
					netrwPix : .bmp,.fit,.fits,.gif,
					 .jpg,.jpeg,.pcx,.ppc
					 .pgm,.png,.psd,.rgb
					 .tif,.xbm,*.xcf
					netrwTags : tags ANmenu ANtags
					netrwTilde : *
					netrwTmp : tmp* *tmp
					netrwYacc : *.y

				In addition, those groups mentioned in
				'suffixes' are also added to the special
				file highlighting group.
				 These syntax highlighting groups are linked
				to netrwGray or Folded by default
				(see hl-Folded), but one may put lines likehi link netrwCompress Visual

				into one's <.vimrc> to use one's own
				preferences. Alternatively, one may
				put such specifications into.vim/after/syntax/netrw.vim.

				 The netrwGray highlighting is set up by
				netrw when* netrwGray has not been previously
 defined
* the gui is running

				 As an example, I myself use a dark-background
				colorscheme with the following in
				.vim/after/syntax/netrw.vim:hi netrwCompress term=NONE cterm=NONE gui=NONE ctermfg=10 guifg=green ctermbg=0 guibg=black
hi netrwData term=NONE cterm=NONE gui=NONE ctermfg=9 guifg=blue ctermbg=0 guibg=black
hi netrwHdr term=NONE cterm=NONE,italic gui=NONE guifg=SeaGreen1
hi netrwLex term=NONE cterm=NONE,italic gui=NONE guifg=SeaGreen1
hi netrwYacc term=NONE cterm=NONE,italic gui=NONE guifg=SeaGreen1
hi netrwLib term=NONE cterm=NONE gui=NONE ctermfg=14 guifg=yellow
hi netrwObj term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwTilde term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwTmp term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwTags term=NONE cterm=NONE gui=NONE ctermfg=12 guifg=red
hi netrwDoc term=NONE cterm=NONE gui=NONE ctermfg=220 ctermbg=27 guifg=yellow2 guibg=Blue3
hi netrwSymLink term=NONE cterm=NONE gui=NONE ctermfg=220 ctermbg=27 guifg=grey60

 g:netrw_ssh_browse_reject 	ssh can sometimes produce unwanted lines,
				messages, banners, and whatnot that one doesn't
				want masquerading as "directories" and "files".
				Use this pattern to remove such embedded
				messages. By default its value is:
					 '^total\s\+\d\+$'

 g:netrw_ssh_cmd 		One may specify an executable command
				to use instead of ssh for remote actions
				such as listing, file removal, etc.
				 default: ssh

 g:netrw_suppress_gx_mesg 	=1 : browsers sometimes produce messages
				which are normally unwanted intermixed
				with the page.
				However, when using links, for example,
				those messages are what the browser produces.
				By setting this option to 0, netrw will not
				suppress browser messages.

 g:netrw_tmpfile_escape 	=' &;'
				escape() is applied to all temporary files
				to escape these characters.

 g:netrw_timefmt 		specify format string to vim's strftime().
				The default, "%c", is "the preferred date
				and time representation for the current
				locale" according to my manpage entry for
				strftime(); however, not all are satisfied
				with it. Some alternatives:
				 "%a %d %b %Y %T",
				 " %a %Y-%m-%d %I-%M-%S %p"
				 default: "%c"

 g:netrw_use_noswf 		netrw normally avoids writing swapfiles
				for browser buffers. However, under some
				systems this apparently is causing nasty
				ml_get errors to appear; if you're getting
				ml_get errors, try putting
				 let g:netrw_use_noswf= 0
				in your .vimrc.
				 default: 1

 g:netrw_winsize 		specify initial size of new windows made with
				"o" (see netrw-o), "v" (see netrw-v),
				:Hexplore or :Vexplore. The g:netrw_winsize
				is an integer describing the percentage of the
				current netrw buffer's window to be used for
				the new window.
				 If g:netrw_winsize is less than zero, then
				the absolute value of g:netrw_winsize will be
				used to specify the quantity of lines or
				columns for the new window.
				 If g:netrw_winsize is zero, then a normal
				split will be made (ie. 'equalalways' will
				take effect, for example).
				 default: 50 (for 50%)

 g:netrw_wiw 			=1 specifies the minimum window width to use
				when shrinking a netrw/Lexplore window
				(see netrw-c-tab).

 g:netrw_xstrlen 		Controls how netrw computes string lengths,
				including multi-byte characters' string
				length. (thanks to N Weibull, T Mechelynck)
				=0: uses Vim's built-in strlen()
				=1: number of codepoints (Latin a + combining
				 circumflex is two codepoints) (DEFAULT)
				=2: number of spacing codepoints (Latin a +
				 combining circumflex is one spacing
				 codepoint; a hard tab is one; wide and
				 narrow CJK are one each; etc.)
				=3: virtual length (counting tabs as anything
				 between 1 and 'tabstop', wide CJK as 2
				 rather than 1, Arabic alif as zero when
				 immediately preceded by lam, one
				 otherwise, etc)

 g:NetrwTopLvlMenu 		This variable specifies the top level
				menu name; by default, it's "Netrw.". If
				you wish to change this, do so in your
				.vimrc.

NETRW BROWSING AND OPTION INCOMPATIBILITIES	netrw-incompatible {{{2

Netrw has been designed to handle user options by saving them, setting the
options to something that's compatible with netrw's needs, and then restoring
them. However, the autochdir option::set acd

is problematic. Autochdir sets the current directory to that containing the
file you edit; this apparently also applies to directories. In other words,
autochdir sets the current directory to that containing the "file" (even if
that "file" is itself a directory).

NETRW SETTINGS WINDOW				netrw-settings-window {{{2

With the NetrwSettings.vim plugin,:NetrwSettings

will bring up a window with the many variables that netrw uses for its
settings. You may change any of their values; when you save the file, the
settings therein will be used. One may also press "?" on any of the lines for
help on what each of the variables do.

(also see: netrw-browser-var netrw-protocol netrw-variables)

OBTAINING A FILE					netrw-obtain netrw-O {{{2

If there are no marked files:

 When browsing a remote directory, one may obtain a file under the cursor
 (ie. get a copy on your local machine, but not edit it) by pressing the O
 key.

If there are marked files:

 The marked files will be obtained (ie. a copy will be transferred to your
 local machine, but not set up for editing).

Only ftp and scp are supported for this operation (but since these two are
available for browsing, that shouldn't be a problem). The status bar will
then show, on its right hand side, a message like "Obtaining filename". The
statusline will be restored after the transfer is complete.

Netrw can also "obtain" a file using the local browser. Netrw's display
of a directory is not necessarily the same as Vim's "current directory",
unless g:netrw_keepdir is set to 0 in the user's <.vimrc>. One may select
a file using the local browser (by putting the cursor on it) and pressing
"O" will then "obtain" the file; ie. copy it to Vim's current directory.

Related topics:
 * To see what the current directory is, use :pwd
 * To make the currently browsed directory the current directory, see
 netrw-cd
 * To automatically make the currently browsed directory the current
 directory, see g:netrw_keepdir.

					netrw-newfile netrw-createfile
OPEN A NEW FILE IN NETRW'S CURRENT DIRECTORY		netrw-% {{{2

To open a new file in netrw's current directory, press "%". This map
will query the user for a new filename; an empty file by that name will
be placed in the netrw's current directory (ie. b:netrw_curdir).

If Lexplore (netrw-:Lexplore) is in use, the new file will be generated
in the g:netrw_chgwin window.

Related topics: netrw-d

PREVIEW WINDOW				netrw-p netrw-preview {{{2

One may use a preview window by using the "p" key when the cursor is atop the
desired filename to be previewed. The display will then split to show both
the browser (where the cursor will remain) and the file (see :pedit). By
default, the split will be taken horizontally; one may use vertical splitting
if one has set g:netrw_preview first.

An interesting set of netrw settings is:let g:netrw_preview = 1
let g:netrw_liststyle = 3
let g:netrw_winsize = 30

These will:

	1. Make vertical splitting the default for previewing files
	2. Make the default listing style "tree"
	3. When a vertical preview window is opened, the directory listing
	 will use only 30% of the columns available; the rest of the window
	 is used for the preview window.

	Related: if you like this idea, you may also find :Lexplore
	 (netrw-:Lexplore) or g:netrw_chgwin of interest

Also see: g:netrw_chgwin netrw-P 'previewwindow' CTRL-W_z :pclose

PREVIOUS WINDOW					netrw-P netrw-prvwin {{{2

To edit a file or directory under the cursor in the previously used (last
accessed) window (see :he CTRL-W_p), press a "P". If there's only one
window, then the one window will be horizontally split (by default).

If there's more than one window, the previous window will be re-used on
the selected file/directory. If the previous window's associated buffer
has been modified, and there's only one window with that buffer, then
the user will be asked if they wish to save the buffer first (yes, no, or
cancel).

Related Actions netrw-cr netrw-o netrw-t netrw-v
Associated setting variables:
 g:netrw_alto control above/below splitting
 g:netrw_altv control right/left splitting
 g:netrw_preview control horizontal vs vertical splitting
 g:netrw_winsize control initial sizing

Also see: g:netrw_chgwin netrw-p

REFRESHING THE LISTING		netrw-refresh netrw-ctrl-l netrw-ctrl_l {{{2

To refresh either a local or remote directory listing, press ctrl-l (<c-l>) or
hit the <cr> when atop the ./ directory entry in the listing. One may also
refresh a local directory by using ":e .".

REVERSING SORTING ORDER		netrw-r netrw-reverse {{{2

One may toggle between normal and reverse sorting order by pressing the
"r" key.

Related topics: netrw-s
Associated setting variable: g:netrw_sort_direction

RENAMING FILES OR DIRECTORIES	netrw-move netrw-rename netrw-R {{{2

If there are no marked files: (see netrw-mf)

 Renaming files and directories involves moving the cursor to the
 file/directory to be moved (renamed) and pressing "R". You will then be
 queried for what you want the file/directory to be renamed to. You may
 select a range of lines with the "V" command (visual selection), and then
 press "R"; you will be queried for each file as to what you want it
 renamed to.

If there are marked files: (see netrw-mf)

 Marked files will be renamed (moved). You will be queried as above in
 order to specify where you want the file/directory to be moved.

 If you answer a renaming query with a "s/frompattern/topattern/", then
 subsequent files on the marked file list will be renamed by taking each
 name, applying that substitute, and renaming each file to the result.
 As an example :mr [query: reply with *.c]
R [query: reply with s/^\(.*\)\.c$/\1.cpp/]

 This example will mark all "*.c" files and then rename them to "*.cpp"
 files. Netrw will protect you from overwriting local files without
 confirmation, but not remote ones.

 The ctrl-X character has special meaning for renaming files:<c-x> : a single ctrl-x tells netrw to ignore the portion of the response
 lying between the last '/' and the ctrl-x.
<c-x><c-x> : a pair of contiguous ctrl-x's tells netrw to ignore any
 portion of the string preceding the double ctrl-x's.

WARNING:

 Note that moving files is a dangerous operation; copies are safer. That's
 because a "move" for remote files is actually a copy + delete -- and if
 the copy fails and the delete succeeds you may lose the file.
 Use at your own risk.

The g:netrw_rename_cmd variable is used to implement remote renaming. By
default its value is:ssh HOSTNAME mv

One may rename a block of files and directories by selecting them with
V (linewise-visual) when using thin style.

See cmdline-editing for more on how to edit the command line; in particular,
you'll find <ctrl-f> (initiates cmdline window editing) and <ctrl-c> (uses the
command line under the cursor) useful in conjunction with the R command.

SELECTING SORTING STYLE			netrw-s netrw-sort {{{2

One may select the sorting style by name, time, or (file) size. The "s" map
allows one to circulate amongst the three choices; the directory listing will
automatically be refreshed to reflect the selected style.

Related topics: netrw-r netrw-S
Associated setting variables: g:netrw_sort_by g:netrw_sort_sequence

SETTING EDITING WINDOW		netrw-editwindow netrw-C netrw-:NetrwC {{{2

One may select a netrw window for editing with the "C" mapping, using the
:NetrwC [win#] command, or by setting g:netrw_chgwin to the selected window
number. Subsequent selection of a file to edit (netrw-cr) will use that
window.

	* C : by itself, will select the current window holding a netrw buffer
	 for subsequent editing via netrw-cr. The C mapping is only available
	 while in netrw buffers.

	* [count]C : the count will be used as the window number to be used
	 for subsequent editing via netrw-cr.

	* :NetrwC will set g:netrw_chgwin to the current window

	* :NetrwC win# will set g:netrw_chgwin to the specified window
	 number

Usinglet g:netrw_chgwin= -1

will restore the default editing behavior
(ie. subsequent editing will use the current window).

Related topics:			netrw-cr g:netrw_browse_split
Associated setting variables:	g:netrw_chgwin

SHRINKING OR EXPANDING A NETRW OR LEXPLORE WINDOW	netrw-c-tab {{{2

The <c-tab> key will toggle a netrw or :Lexplore window's width,
but only if g:netrw_usetab exists and is non-zero (and, of course,
only if your terminal supports differentiating <c-tab> from a plain
<tab>).

 * If the current window is a netrw window, toggle its width
 (between g:netrw_wiw and its original width)

 * Else if there is a :Lexplore window in the current tab, toggle
 its width

 * Else bring up a :Lexplore window

If g:netrw_usetab exists and is zero, or if there is a pre-existing mapping
for <c-tab>, then the <c-tab> will not be mapped. One may map something other
than a <c-tab>, too: (but you'll still need to have had g:netrw_usetab set).nmap <unique> (whatever) <Plug>NetrwShrink

Related topics:			:Lexplore
Associated setting variable:	g:netrw_usetab

USER SPECIFIED MAPS					netrw-usermaps {{{1

One may make customized user maps. Specify a variable, g:Netrw_UserMaps,
to hold a List of lists of keymap strings and function names:[["keymap-sequence","ExampleUserMapFunc"],...]

When netrw is setting up maps for a netrw buffer, if g:Netrw_UserMaps
exists, then the internal function netrw#UserMaps(islocal) is called.
This function goes through all the entries in the g:Netrw_UserMaps list:

	* sets up maps:nno <buffer> <silent> KEYMAP-SEQUENCE
:call s:UserMaps(islocal,"ExampleUserMapFunc")

	* refreshes if result from that function call is the string
	 "refresh"
	* if the result string is not "", then that string will be
	 executed (:exe result)
	* if the result is a List, then the above two actions on results
	 will be taken for every string in the result List

The user function is passed one argument; it resemblesfun! ExampleUserMapFunc(islocal)

where a:islocal is 1 if its a local-directory system call or 0 when
remote-directory system call.

			 netrw-call netrw-expose netrw-modify
Use netrw#Expose("varname") to access netrw-internal (script-local)
				 variables.
Use netrw#Modify("varname",newvalue) to change netrw-internal variables.
Use netrw#Call("funcname"[,args]) to call a netrw-internal function with
				 specified arguments.

Example: Get a copy of netrw's marked file list:let netrwmarkfilelist= netrw#Expose("netrwmarkfilelist")

Example: Modify the value of netrw's marked file list:call netrw#Modify("netrwmarkfilelist",[])

Example: Clear netrw's marked file list via a mapping on gu" ExampleUserMap: {{{2
fun! ExampleUserMap(islocal)
 call netrw#Modify("netrwmarkfilelist",[])
 call netrw#Modify('netrwmarkfilemtch_{bufnr("%")}',"")
 let retval= ["refresh"]
 return retval
endfun
let g:Netrw_UserMaps= [["gu","ExampleUserMap"]]

10. Problems and Fixes					netrw-problems {{{1

	(This section is likely to grow as I get feedback)
	(also see netrw-debug)
								netrw-p1
	P1. I use windows 95, and my ftp dumps four blank lines at the {{{2
	 end of every read.

		See netrw-fixup, and put the following into your
		<.vimrc> file:

			let g:netrw_win95ftp= 1

								netrw-p2
	P2. I use Windows, and my network browsing with ftp doesn't sort by {{{2
	 time or size! -or- The remote system is a Windows server; why
	 don't I get sorts by time or size?

		Windows' ftp has a minimal support for ls (ie. it doesn't
		accept sorting options). It doesn't support the -F which
		gives an explanatory character (ABC/ for "ABC is a directory").
		Netrw then uses "dir" to get both its thin and long listings.
		If you think your ftp does support a full-up ls, put the
		following into your <.vimrc>:let g:netrw_ftp_list_cmd = "ls -lF"
let g:netrw_ftp_timelist_cmd= "ls -tlF"
let g:netrw_ftp_sizelist_cmd= "ls -slF"

		Alternatively, if you have cygwin on your Windows box, put
		into your <.vimrc>:let g:netrw_cygwin= 1

		This problem also occurs when the remote system is Windows.
		In this situation, the various g:netrw_ftp_[time|size]list_cmds
		are as shown above, but the remote system will not correctly
		modify its listing behavior.

								netrw-p3
	P3. I tried rcp://user@host/ (or protocol other than ftp) and netrw {{{2
	 used ssh! That wasn't what I asked for...

		Netrw has two methods for browsing remote directories: ssh
		and ftp. Unless you specify ftp specifically, ssh is used.
		When it comes time to do download a file (not just a directory
		listing), netrw will use the given protocol to do so.

								netrw-p4
	P4. I would like long listings to be the default. {{{2

		Put the following statement into your vimrc:let g:netrw_liststyle= 1

		Check out netrw-browser-var for more customizations that
		you can set.

								netrw-p5
	P5. My times come up oddly in local browsing {{{2

		Does your system's strftime() accept the "%c" to yield dates
		such as "Sun Apr 27 11:49:23 1997"? If not, do a
		"man strftime" and find out what option should be used. Then
		put it into your vimrc:let g:netrw_timefmt= "%X" (where X is the option)

								netrw-p6
	P6. I want my current directory to track my browsing. {{{2
	 How do I do that?

	 Put the following line in your vimrc:
let g:netrw_keepdir= 0

								netrw-p7
	P7. I use Chinese (or other non-ascii) characters in my filenames, {{{2
	 and netrw (Explore, Sexplore, Hexplore, etc) doesn't display them!

		(taken from an answer provided by Wu Yongwei on the vim
		mailing list)
		I now see the problem. Your code page is not 936, right? Vim
		seems only able to open files with names that are valid in the
		current code page, as are many other applications that do not
		use the Unicode version of Windows APIs. This is an OS-related
		issue. You should not have such problems when the system
		locale uses UTF-8, such as modern Linux distros.

		(...it is one more reason to recommend that people use utf-8!)

								netrw-p8
	P8. I'm getting "ssh is not executable on your system" -- what do I {{{2
	 do?

		(Dudley Fox) Most people I know use putty for windows ssh. It
		is a free ssh/telnet application. You can read more about it
		here:

		http://www.chiark.greenend.org.uk/~sgtatham/putty/ Also:

		(Marlin Unruh) This program also works for me. It's a single
		executable, so he/she can copy it into the Windows\System32
		folder and create a shortcut to it.

		(Dudley Fox) You might also wish to consider plink, as it
		sounds most similar to what you are looking for. plink is an
		application in the putty suite.

 http://the.earth.li/~sgtatham/putty/0.58/htmldoc/Chapter7.html#plink

		(Vissale Neang) Maybe you can try OpenSSH for windows, which
		can be obtained from:

		http://sshwindows.sourceforge.net/

		It doesn't need the full Cygwin package.

		(Antoine Mechelynck) For individual Unix-like programs needed
		for work in a native-Windows environment, I recommend getting
		them from the GnuWin32 project on sourceforge if it has them:

		 http://gnuwin32.sourceforge.net/

		Unlike Cygwin, which sets up a Unix-like virtual machine on
		top of Windows, GnuWin32 is a rewrite of Unix utilities with
		Windows system calls, and its programs works quite well in the
		cmd.exe "Dos box".

		(dave) Download WinSCP and use that to connect to the server.
		In Preferences > Editors, set gvim as your editor:

 Click "Add..."

 Set External Editor (adjust path as needed, include
			 the quotes and !.! at the end):
			 "c:\Program Files\Vim\vim82\gvim.exe" !.!

 Check that the filetype in the box below is
			 {asterisk}.{asterisk} (all files), or whatever types
			 you want (cec: change {asterisk} to * ; I had to
			 write it that way because otherwise the helptags
			 system thinks it's a tag)

 Make sure it's at the top of the listbox (click it,
			 then click "Up" if it's not)
		If using the Norton Commander style, you just have to hit <F4>
		to edit a file in a local copy of gvim.

		(Vit Gottwald) How to generate public/private key and save
		public key it on server:http://www.chiark.greenend.org.uk/~sgtatham/putty/0.60/htmldoc/Chapter8.html#pubkey-gettingready
 (8.3 Getting ready for public key authentication)

		How to use a private key with "pscp":http://www.chiark.greenend.org.uk/~sgtatham/putty/0.60/htmldoc/Chapter5.html
 (5.2.4 Using public key authentication with PSCP)

		(Ben Schmidt) I find the ssh included with cwRsync is
		brilliant, and install cwRsync or cwRsyncServer on most
		Windows systems I come across these days. I guess COPSSH,
		packed by the same person, is probably even better for use as
		just ssh on Windows, and probably includes sftp, etc. which I
		suspect the cwRsync doesn't, though it might

		(cec) To make proper use of these suggestions above, you will
		need to modify the following user-settable variables in your
		.vimrc:

		g:netrw_ssh_cmd g:netrw_list_cmd g:netrw_mkdir_cmd
		g:netrw_rm_cmd g:netrw_rmdir_cmd g:netrw_rmf_cmd

		The first one (g:netrw_ssh_cmd) is the most important; most
		of the others will use the string in g:netrw_ssh_cmd by
		default.

						netrw-p9 netrw-ml_get
	P9. I'm browsing, changing directory, and bang! ml_get errors {{{2
	 appear and I have to kill vim. Any way around this?

		Normally netrw attempts to avoid writing swapfiles for
		its temporary directory buffers. However, on some systems
		this attempt appears to be causing ml_get errors to
		appear. Please try setting g:netrw_use_noswf to 0
		in your <.vimrc>:let g:netrw_use_noswf= 0

								netrw-p10
	P10. I'm being pestered with "[something] is a directory" and {{{2
	 "Press ENTER or type command to continue" prompts...

		The "[something] is a directory" prompt is issued by Vim,
		not by netrw, and there appears to be no way to work around
		it. Coupled with the default cmdheight of 1, this message
		causes the "Press ENTER..." prompt. So: read hit-enter;
		I also suggest that you set your 'cmdheight' to 2 (or more) in
		your <.vimrc> file.

								netrw-p11
	P11. I want to have two windows; a thin one on the left and my {{{2
	 editing window on the right. How may I accomplish this?

	 You probably want netrw running as in a side window. If so, you
	 will likely find that ":[N]Lexplore" does what you want. The
	 optional "[N]" allows you to select the quantity of columns you
	 wish the :Lexplorer window to start with (see g:netrw_winsize
	 for how this parameter works).

	 Previous solution:

		* Put the following line in your <.vimrc>:
			let g:netrw_altv = 1
		* Edit the current directory: :e .
		* Select some file, press v
		* Resize the windows as you wish (see CTRL-W_< and
		 CTRL-W_>). If you're using gvim, you can drag
		 the separating bar with your mouse.
		* When you want a new file, use ctrl-w h to go back to the
		 netrw browser, select a file, then press P (see CTRL-W_h
		 and netrw-P). If you're using gvim, you can press
		 <leftmouse> in the browser window and then press the
		 <middlemouse> to select the file.

								netrw-p12
	P12. My directory isn't sorting correctly, or unwanted letters are {{{2
	 appearing in the listed filenames, or things aren't lining
	 up properly in the wide listing, ...

	 This may be due to an encoding problem. I myself usually use
	 utf-8, but really only use ascii (ie. bytes from 32-126).
	 Multibyte encodings use two (or more) bytes per character.
	 You may need to change g:netrw_sepchr and/or g:netrw_xstrlen.

								netrw-p13
	P13. I'm a Windows + putty + ssh user, and when I attempt to {{{2
	 browse, the directories are missing trailing "/"s so netrw treats
	 them as file transfers instead of as attempts to browse
	 subdirectories. How may I fix this?

	 (mikeyao) If you want to use vim via ssh and putty under Windows,
	 try combining the use of pscp/psftp with plink. pscp/psftp will
	 be used to connect and plink will be used to execute commands on
	 the server, for example: list files and directory using 'ls'.

	 These are the settings I use to do this:
" list files, it's the key setting, if you haven't set,
" you will get a blank buffer
let g:netrw_list_cmd = "plink HOSTNAME ls -Fa"
" if you haven't add putty directory in system path, you should
" specify scp/sftp command. For examples:
"let g:netrw_sftp_cmd = "d:\\dev\\putty\\PSFTP.exe"
"let g:netrw_scp_cmd = "d:\\dev\\putty\\PSCP.exe"

								netrw-p14
	P14. I would like to speed up writes using Nwrite and scp/ssh {{{2
	 style connections. How? (Thomer M. Gil)

	 Try using ssh's ControlMaster and ControlPath (see the ssh_config
	 man page) to share multiple ssh connections over a single network
	 connection. That cuts out the cryptographic handshake on each
	 file write, sometimes speeding it up by an order of magnitude.
	 (see http://thomer.com/howtos/netrw_ssh.html)
	 (included by permission)

	 Add the following to your ~/.ssh/config:# you change "*" to the hostname you care about
Host *
 ControlMaster auto
 ControlPath /tmp/%r@%h:%p

	 Then create an ssh connection to the host and leave it running:ssh -N host.domain.com

	 Now remotely open a file with Vim's Netrw and enjoy the
	 zippiness:vim scp://host.domain.com//home/user/.bashrc

								netrw-p15
	P15. How may I use a double-click instead of netrw's usual single {{{2
	 click to open a file or directory? (Ben Fritz)

	 First, disable netrw's mapping withlet g:netrw_mousemaps= 0

	 and then create a netrw buffer only mapping in
	 $HOME/.vim/after/ftplugin/netrw.vim:nmap <buffer> <2-leftmouse> <CR>

	 Note that setting g:netrw_mousemaps to zero will turn off
	 all netrw's mouse mappings, not just the <leftmouse> one.
	 (see g:netrw_mousemaps)

								netrw-p16
	P16. When editing remote files (ex. :e ftp://hostname/path/file), {{{2
	 under Windows I get an E303 message complaining that its unable
	 to open a swap file.

	 (romainl) It looks like you are starting Vim from a protected
	 directory. Start netrw from your $HOME or other writable
	 directory.

								netrw-p17
	P17. Netrw is closing buffers on its own. {{{2
	 What steps will reproduce the problem?
		1. :Explore, navigate directories, open a file
		2. :Explore, open another file
		3. Buffer opened in step 1 will be closed. o
	 What is the expected output? What do you see instead?
		I expect both buffers to exist, but only the last one does.

	 (Lance) Problem is caused by "set autochdir" in .vimrc.
	 (drchip) I am able to duplicate this problem with 'acd' set.
	 It appears that the buffers are not exactly closed;
		 a ":ls!" will show them (although ":ls" does not).

								netrw-P18
	P18. How to locally edit a file that's only available via {{{2
	 another server accessible via ssh?
	 See http://stackoverflow.com/questions/12469645/
	 "Using Vim to Remotely Edit A File on ServerB Only
	 Accessible From ServerA"

								netrw-P19
	P19. How do I get numbering on in directory listings? {{{2
		With g:netrw_bufsettings, you can control netrw's buffer
		settings; try puttinglet g:netrw_bufsettings="noma nomod nu nobl nowrap ro nornu"

		in your .vimrc. If you'd like to have relative numbering
		instead, trylet g:netrw_bufsettings="noma nomod nonu nobl nowrap ro rnu"

								netrw-P20
	P20. How may I have gvim start up showing a directory listing? {{{2
		Try putting the following code snippet into your .vimrc:augroup VimStartup
 au!
 au VimEnter * if expand("%") == "" && argc() == 0 &&
 \ (v:servername =~ 'GVIM\d*' || v:servername == "")
 \ | e . | endif
augroup END

		You may use Lexplore instead of "e" if you're so inclined.
		This snippet assumes that you have client-server enabled
		(ie. a "huge" vim version).

								netrw-P21
	P21. I've made a directory (or file) with an accented character, {{{2
		but netrw isn't letting me enter that directory/read that file:

		Its likely that the shell or o/s is using a different encoding
		than you have vim (netrw) using. A patch to vim supporting
		"systemencoding" may address this issue in the future; for
		now, just have netrw use the proper encoding. For example:au FileType netrw set enc=latin1

								netrw-P22
	P22. I get an error message when I try to copy or move a file: {{{2
error (netrw) tried using g:netrw_localcopycmd<cp>; it doesn't work!

	 What's wrong?

	 Netrw uses several system level commands to do things (see

		 g:netrw_localcopycmd, g:netrw_localmovecmd,
		 g:netrw_mkdir_cmd).

	 You may need to adjust the default commands for one or more of
	 these commands by setting them properly in your .vimrc. Another
	 source of difficulty is that these commands use vim's local
	 directory, which may not be the same as the browsing directory
	 shown by netrw (see g:netrw_keepdir).

11. Debugging Netrw Itself				netrw-debug {{{1

Step 1: check that the problem you've encountered hasn't already been resolved
by obtaining a copy of the latest (often developmental) netrw at:

	http://www.drchip.org/astronaut/vim/index.html#NETRW

The <netrw.vim> script is typically installed on systems as something like:
/usr/local/share/vim/vim8x/plugin/netrwPlugin.vim
/usr/local/share/vim/vim8x/autoload/netrw.vim
 (see output of :echo &rtp)

which is loaded automatically at startup (assuming :set nocp). If you
installed a new netrw, then it will be located at$HOME/.vim/plugin/netrwPlugin.vim
$HOME/.vim/autoload/netrw.vim

Step 2: assuming that you've installed the latest version of netrw,
check that your problem is really due to netrw. Create a file
called netrw.vimrc with the following contents:set nocp
so $HOME/.vim/plugin/netrwPlugin.vim

Then run netrw as follows:vim -u netrw.vimrc --noplugins -i NONE [some path here]

Perform whatever netrw commands you need to, and check that the problem is
still present. This procedure sidesteps any issues due to personal .vimrc
settings, .viminfo file, and other plugins. If the problem does not appear,
then you need to determine which setting in your .vimrc is causing the
conflict with netrw or which plugin(s) is/are involved.

Step 3: If the problem still is present, then get a debugging trace from
netrw:

	1. Get the <Decho.vim> script, available as:

	 http://www.drchip.org/astronaut/vim/index.html#DECHO
	 or
	 http://vim.sourceforge.net/scripts/script.php?script_id=120

	 Decho.vim is provided as a "vimball". You
	 should edit the Decho.vba.gz file and source it in:vim Decho.vba.gz
:so %
:q

	2. To turn on debug tracing in netrw, then edit the <netrw.vim>
	 file by typing:vim netrw.vim
:DechoOn
:wq

	 To restore to normal non-debugging behavior, re-edit <netrw.vim>
	 and typevim netrw.vim
:DechoOff
:wq

	 This command, provided by <Decho.vim>, will comment out all
	 Decho-debugging statements (Dfunc(), Dret(), Decho(), Dredir()).

	3. Then bring up vim and attempt to evoke the problem by doing a
	 transfer or doing some browsing. A set of messages should appear
	 concerning the steps that <netrw.vim> took in attempting to
	 read/write your file over the network in a separate tab or
	 server vim window.

	 Change the netrw.vimrc file to include the Decho plugin:set nocp
so $HOME/.vim/plugin/Decho.vim
so $HOME/.vim/plugin/netrwPlugin.vim

	 You should continue to run vim withvim -u netrw.vimrc --noplugins -i NONE [some path here]

	 to avoid entanglements with options and other plugins.

	 To save the file: under linux, the output will be in a separate
	 remote server window; in it, just save the file with:w! DBG

	 Under a vim that doesn't support clientserver, your debugging
	 output will appear in another tab::tabnext
:set bt=
:w! DBG

	 Furthermore, it'd be helpful if you would type:Dsep <command>

	 where <command> is the command you're about to type next,
	 thereby making it easier to associate which part of the
	 debugging trace is due to which command.

	 Please send that information to <netrw.vim>'s maintainer along
	 with the o/s you're using and the vim version that you're using
	 (see :version) (remove the embedded NOSPAM first)

12. History						netrw-history {{{1

	v172:	Sep 02, 2021	* (Bram Moolenaar) Changed "l:go" to "go"
				* (Bram Moolenaar) no need for "b" in
				 netrw-safe guioptions
		Nov 15, 2021	* removed netrw_localrm and netrw_localrmdir
				 references
		Aug 18, 2022	* (Miguel Barro) improving compatability with
				 powershell
	v171:	Oct 09, 2020	* included code in s:NetrwOptionsSafe()
				 to allow 'bh' to be set to delete when
				 rather than hide when g:netrw_fastbrowse
				 was zero.
				* Installed g:netrw_clipboard setting
				* Installed option bypass for 'guioptions'
				 a/A settings
				* Changed popup_beval() to popup_atcursor()
				 in netrw#ErrorMsg (lacygoill). Apparently
				 popup_beval doesn't reliably close the
				 popup when the mouse is moved.
				* VimEnter() now using win_execute to examine
				 buffers for an attempt to open a directory.
				 Avoids issues with popups/terminal from
				 command line. (lacygoill)
		Jun 28, 2021	* (zeertzjq) provided a patch for use of
				 xmap,xno instead of vmap,vno in
				 netrwPlugin.vim. Avoids entanglement with
				 select mode.
		Jul 14, 2021	* Fixed problem addressed by tst976; opening
				 a file using tree mode, going up a
				 directory, and opening a file there was
				 opening the file in the wrong directory.
		Jul 28, 2021	* (Ingo Karkat) provided a patch fixing an
				 E488 error with netrwPlugin.vim
				 (occurred for vim versions < 8.02)
	v170:	Mar 11, 2020	* (reported by Reiner Herrmann) netrw+tree
				 would not hide with the ^\..* pattern
				 correctly.
				* (Marcin Szamotulski) NetrwOptionRestore
				 did not restore options correctly that
				 had a single quote in the option string.
		Apr 13, 2020	* implemented error handling via popup
				 windows (see popup_beval())
		Apr 30, 2020	* (reported by Manatsu Takahashi) while
				 using Lexplore, a modified file could
				 be overwritten. Sol'n: will not overwrite,
				 but will emit an E37 (although one cannot
				 add an ! to override)
		Jun 07, 2020	* (reported by Jo Totland) repeatedly invoking
				 :Lexplore and quitting it left unused
				 hidden buffers. Netrw will now set netrw
				 buffers created by :Lexplore to 'bh'=wipe.
	v169:	Dec 20, 2019	* (reported by amkarthik) that netrw's x
				 (netrw-x) would throw an error when
				 attempting to open a local directory.
	v168:	Dec 12, 2019	* scp timeout error message not reported,
				 hopefully now fixed (Shane Xb Qian)
	v167:	Nov 29, 2019	* netrw does a save&restore on @* and @+.
				 That causes problems with the clipboard.
				 Now restores occurs only if @* or @+ have
				 been changed.
				* netrw will change @* or @+ less often.
				 Never if I happen to have caught all the
				 operations that modify the unnamed
				 register (which also writes @*).
				* Modified hiding behavior so that "s"
				 will not ignore hiding.
	v166:	Nov 06, 2019	* Removed a space from a nmap for "-"
				* Numerous debugging statement changes
	v163:	Dec 05, 2017	* (Cristi Balan) reported that a setting ('sel')
				 was left changed
				* (Holger Mitschke) reported a problem with
				 saving and restoring history. Fixed.
				* Hopefully I fixed a nasty bug that caused a
				 file rename to wipe out a buffer that it
				 should not have wiped out.
				* (Holger Mitschke) amended this help file
				 with additional g:netrw_special_syntax
				 items
				* Prioritized wget over curl for
				 g:netrw_http_cmd
	v162:	Sep 19, 2016	* (haya14busa) pointed out two syntax errors
				 with a patch; these are now fixed.
		Oct 26, 2016	* I started using mate-terminal and found that
				 x and gx (netrw-x and netrw-gx) were no
				 longer working. Fixed (using atril when
				 $DESKTOP_SESSION is "mate").
		Nov 04, 2016	* (Martin Vuille) pointed out that @+ was
				 being restored with keepregstar rather than
				 keepregplus.
		Nov 09, 2016	* Broke apart the command from the options,
				 mostly for Windows. Introduced new netrw
				 settings: g:netrw_localcopycmdopt
				 g:netrw_localcopydircmdopt
				 g:netrw_localmkdiropt
				 g:netrw_localmovecmdopt
		Nov 21, 2016	* (mattn) provided a patch for preview; swapped
				 winwidth() with winheight()
		Nov 22, 2016	* (glacambre) reported that files containing
				 spaces weren't being obtained properly via
				 scp. Fix: apparently using single quotes
				 such as with "file name" wasn't enough; the
				 spaces inside the quotes also had to be
				 escaped (ie. "file\ name").
				* Also fixed obtain (netrw-O) to be able to
				 obtain files with spaces in their names
		Dec 20, 2016	* (xc1427) Reported that using "I" (netrw-I)
				 when atop "Hiding" in the banner also caused
				 the active-banner hiding control to occur
		Jan 03, 2017	* (Enno Nagel) reported that attempting to
				 apply netrw to a directory that was without
				 read permission caused a syntax error.
		Jan 13, 2017	* (Ingo Karkat) provided a patch which makes
				 using netrw#Call() better. Now returns
				 value of internal routines return, for example.
		Jan 13, 2017	* (Ingo Karkat) changed netrw#FileUrlRead to
				 use :edit instead of :read. I also
				 changed the routine name to netrw#FileUrlEdit.
		Jan 16, 2017	* (Sayem) reported a problem where :Lexplore
				 could generate a new listing buffer and
				 window instead of toggling the netrw display.
				 Unfortunately, the directions for eliciting
				 the problem weren't complete, so I may or
				 may not have fixed that issue.
		Feb 06, 2017	* Implemented cb and cB. Changed "c" to "cd".
				 (see netrw-cb, netrw-cB, and netrw-cd)
		Mar 21, 2017	* previously, netrw would specify (safe) settings
				 even when the setting was already safe for
				 netrw. Netrw now attempts to leave such
				 already-netrw-safe settings alone.
				 (affects s:NetrwOptionRestore() and
				 s:NetrwSafeOptions(); also introduced
				 s:NetrwRestoreSetting())
		Jun 26, 2017	* (Christian Brabandt) provided a patch to
				 allow curl to follow redirects (ie. -L
				 option)
		Jun 26, 2017	* (Callum Howard) reported a problem with
				 :Lexpore not removing the Lexplore window
				 after a change-directory
		Aug 30, 2017	* (Ingo Karkat) one cannot switch to the
				 previously edited file (e.g. with CTRL-^)
				 after editing a file:// URL. Patch to
				 have a "keepalt" included.
		Oct 17, 2017	* (Adam Faryna) reported that gn (netrw-gn)
				 did not work on directories in the current
				 tree
	v157:	Apr 20, 2016	* (Nicola) had set up a "nmap <expr> ..." with
				 a function that returned a 0 while silently
				 invoking a shell command. The shell command
				 activated a ShellCmdPost event which in turn
				 called s:LocalBrowseRefresh(). That looks
				 over all netrw buffers for changes needing
				 refreshes. However, inside a :map-<expr>,
				 tab and window changes are disallowed. Fixed.
				 (affects netrw's s:LocalBrowseRefresh())
				* g:netrw_localrmdir not used any more, but
				 the relevant patch that causes delete() to
				 take over was #1107 (not #1109).
				* expand() is now used on g:netrw_home;
				 consequently, g:netrw_home may now use
				 environment variables
				* s:NetrwLeftmouse and s:NetrwCLeftmouse will
				 return without doing anything if invoked
				 when inside a non-netrw window
		Jun 15, 2016	* gx now calls netrw#GX() which returns
				 the word under the cursor. The new
				 wrinkle: if one is in a netrw buffer,
				 then netrw's s:NetrwGetWord().
		Jun 22, 2016	* Netrw was executing all its associated
				 Filetype commands silently; I'm going
				 to try doing that "noisily" and see if
				 folks have a problem with that.
		Aug 12, 2016	* Changed order of tool selection for
				 handling http://... viewing.
				 (Nikolay Aleksandrovich Pavlov)
		Aug 21, 2016	* Included hiding/showing/all for tree
				 listings
				* Fixed refresh (^L) for tree listings
	v156:	Feb 18, 2016	* Changed =~ to =~# where appropriate
		Feb 23, 2016	* s:ComposePath(base,subdir) now uses
				 fnameescape() on the base portion
		Mar 01, 2016	* (gt_macki) reported where :Explore would
				 make file unlisted. Fixed (tst943)
		Apr 04, 2016	* (reported by John Little) netrw normally
				 suppresses browser messages, but sometimes
				 those "messages" are what is wanted.
				 See g:netrw_suppress_gx_mesg
		Apr 06, 2016	* (reported by Carlos Pita) deleting a remote
				 file was giving an error message. Fixed.
		Apr 08, 2016	* (Charles Cooper) had a problem with an
				 undefined b:netrw_curdir. He also provided
				 a fix.
		Apr 20, 2016	* Changed s:NetrwGetBuffer(); now uses
				 dictionaries. Also fixed the "No Name"
				 buffer problem.
	v155:	Oct 29, 2015	* (Timur Fayzrakhmanov) reported that netrw's
				 mapping of ctrl-l was not allowing refresh of
				 other windows when it was done in a netrw
				 window.
		Nov 05, 2015	* Improved s:TreeSqueezeDir() to use search()
				 instead of a loop
				* NetrwBrowse() will return line to
				 w:netrw_bannercnt if cursor ended up in
				 banner
		Nov 16, 2015	* Added a <Plug>NetrwTreeSqueeze (netrw-s-cr)
		Nov 17, 2015	* Commented out imaps -- perhaps someone can
				 tell me how they're useful and should be
				 retained?
		Nov 20, 2015	* Added netrw-ma and netrw-mA support
		Nov 20, 2015	* gx (netrw-gx) on a URL downloaded the
				 file in addition to simply bringing up the
				 URL in a browser. Fixed.
		Nov 23, 2015	* Added g:netrw_sizestyle support
		Nov 27, 2015	* Inserted a lot of <c-u>s into various netrw
				 maps.
		Jan 05, 2016	* netrw-qL implemented to mark files based
				 upon location-lists; similar to netrw-qF.
		Jan 19, 2016	* using - call delete(directoryname,"d") -
				 instead of using g:netrw_localrmdir if
				 v7.4 + patch#1107 is available
		Jan 28, 2016	* changed to using winsaveview() and
				 winrestview()
		Jan 28, 2016	* s:NetrwTreePath() now does a save and
				 restore of view
		Feb 08, 2016	* Fixed a tree-listing problem with remote
				 directories
	v154:	Feb 26, 2015	* (Yuri Kanivetsky) reported a situation where
				 a file was not treated properly as a file
				 due to g:netrw_keepdir == 1
		Mar 25, 2015	* (requested by Ben Friz) one may now sort by
				 extension
		Mar 28, 2015	* (requested by Matt Brooks) netrw has a lot
				 of buffer-local mappings; however, some
				 plugins (such as vim-surround) set up
				 conflicting mappings that cause vim to wait.
				 The "<nowait>" modifier has been included
				 with most of netrw's mappings to avoid that
				 delay.
		Jun 26, 2015	* netrw-gn mapping implemented
				* :Ntree NotADir resulted in having
				 the tree listing expand in the error messages
				 window. Fixed.
		Jun 29, 2015	* Attempting to delete a file remotely caused
				 an error with "keepsol" mentioned; fixed.
		Jul 08, 2015	* Several changes to keep the :jumps table
				 correct when working with
				 g:netrw_fastbrowse set to 2
				* wide listing with accented characters fixed
				 (using %-S instead of %-s with a printf()
		Jul 13, 2015	* (Daniel Hahler) CheckIfKde() could be true
				 but kfmclient not installed. Changed order
				 in netrw#BrowseX(): checks if kde and
				 kfmclient, then will use xdg-open on a unix
				 system (if xdg-open is executable)
		Aug 11, 2015	* (McDonnell) tree listing mode wouldn't
				 select a file in a open subdirectory.
				* (McDonnell) when multiple subdirectories
				 were concurrently open in tree listing
				 mode, a ctrl-L wouldn't refresh properly.
				* The netrw:target menu showed duplicate
				 entries
		Oct 13, 2015	* (mattn) provided an exception to handle
				 windows with shellslash set but no shell
		Oct 23, 2015	* if g:netrw_usetab and <c-tab> now used
				 to control whether NetrwShrink is used
				 (see netrw-c-tab)
	v153:	May 13, 2014	* added another g:netrw_ffkeep usage {{{2
		May 14, 2014	* changed s:PerformListing() so that it
				 always sets ft=netrw for netrw buffers
				 (ie. even when syntax highlighting is
				 off, not available, etc)
		May 16, 2014	* introduced the netrw-ctrl-r functionality
		May 17, 2014	* introduced the netrw-:NetrwMB functionality
				* mb and mB (netrw-mb, netrw-mB) will
				 add/remove marked files from bookmark list
		May 20, 2014	* (Enno Nagel) reported that :Lex <dirname>
				 wasn't working. Fixed.
		May 26, 2014	* restored test to prevent leftmouse window
				 resizing from causing refresh.
				 (see s:NetrwLeftmouse())
				* fixed problem where a refresh caused cursor
				 to go just under the banner instead of
				 staying put
		May 28, 2014	* (László Bimba) provided a patch for opening
				 the :Lexplore window 100% high, optionally
				 on the right, and will work with remote
				 files.
		May 29, 2014	* implemented :NetrwC (see netrw-:NetrwC)
		Jun 01, 2014	* Removed some "silent"s from commands used
				 to implemented scp://... and pscp://...
				 directory listing. Permits request for
				 password to appear.
		Jun 05, 2014	* (Enno Nagel) reported that user maps "/"
				 caused problems with "b" and "w", which
				 are mapped (for wide listings only) to
				 skip over files rather than just words.
		Jun 10, 2014	* g:netrw_gx introduced to allow users to
				 override default "<cfile>" with the gx
				 (netrw-gx) map
		Jun 11, 2014	* gx (netrw-gx), with 'autowrite' set,
				 will write modified files. s:NetrwBrowseX()
				 will now save, turn off, and restore the
				 'autowrite' setting.
		Jun 13, 2014	* added visual map for gx use
		Jun 15, 2014	* (Enno Nagel) reported that with having hls
				 set and wide listing style in use, that the
				 b and w maps caused unwanted highlighting.
		Jul 05, 2014	* netrw-mv and netrw-mX commands included
		Jul 09, 2014	* g:netrw_keepj included, allowing optional
				 keepj
		Jul 09, 2014	* fixing bugs due to previous update
		Jul 21, 2014	* (Bruno Sutic) provided an updated
				 netrw_gitignore.vim
		Jul 30, 2014	* (Yavuz Yetim) reported that editing two
				 remote files of the same name caused the
				 second instance to have a "temporary"
				 name. Fixed: now they use the same buffer.
		Sep 18, 2014	* (Yasuhiro Matsumoto) provided a patch which
				 allows scp and windows local paths to work.
		Oct 07, 2014	* gx (see netrw-gx) when atop a directory,
				 will now do gf instead
		Nov 06, 2014	* For cygwin: cygstart will be available for
				 netrw#BrowseX() to use if its executable.
		Nov 07, 2014	* Began support for file://... urls. Will use
				 g:netrw_file_cmd (typically elinks or links)
		Dec 02, 2014	* began work on having mc (netrw-mc) copy
				 directories. Works for linux machines,
				 cygwin+vim, but not for windows+gvim.
		Dec 02, 2014	* in tree mode, netrw was not opening
				 directories via symbolic links.
		Dec 02, 2014	* added resolved link information to
				 thin and tree modes
		Dec 30, 2014	* (issue#231) :ls was not showing
				 remote-file buffers reliably. Fixed.
	v152:	Apr 08, 2014	* uses the 'noswapfile' option (requires {{{2
				 vim 7.4 with patch 213)
				* (Enno Nagel) turn 'rnu' off in netrw
				 buffers.
				* (Quinn Strahl) suggested that netrw
				 allow regular window splitting to occur,
				 thereby allowing 'equalalways' to take
				 effect.
				* (qingtian zhao) normally, netrw will
				 save and restore the 'fileformat';
				 however, sometimes that isn't wanted
		Apr 14, 2014	* whenever netrw marks a buffer as ro,
				 it will also mark it as nomod.
		Apr 16, 2014	* sftp protocol now supported by
				 netrw#Obtain(); this means that one
				 may use "mc" to copy a remote file
				 to a local file using sftp, and that
				 the netrw-O command can obtain remote
				 files via sftp.
				* added [count]C support (see netrw-C)
		Apr 18, 2014	* when g:netrw_chgwin is one more than
				 the last window, then vertically split
				 the last window and use it as the
				 chgwin window.
		May 09, 2014	* SavePosn was "saving filename under cursor"
				 from a non-netrw window when using :Rex.
	v151:	Jan 22, 2014	* extended :Rexplore to return to buffer {{{2
				 prior to Explore or editing a directory
				* (Ken Takata) netrw gave error when
				 clipboard was disabled. Sol'n: Placed
				 several if has("clipboard") tests in.
				* Fixed ftp://X@Y@Z// problem; X@Y now
				 part of user id, and only Z is part of
				 hostname.
				* (A Loumiotis) reported that completion
				 using a directory name containing spaces
				 did not work. Fixed with a retry in
				 netrw#Explore() which removes the
				 backslashes vim inserted.
		Feb 26, 2014	* :Rexplore now records the current file
				 using w:netrw_rexfile when returning via
				 :Rexplore
		Mar 08, 2014	* (David Kotchan) provided some patches
				 allowing netrw to work properly with
				 windows shares.
				* Multiple one-liner help messages available
				 by pressing <cr> while atop the "Quick
				 Help" line
				* worked on ShellCmdPost, FocusGained event
				 handling.
				* :Lexplore path: will be used to update
				 a left-side netrw browsing directory.
		Mar 12, 2014	* netrw-s-cr: use <s-cr> to close
				 tree directory implemented
		Mar 13, 2014	* (Tony Mechylynck) reported that using
				 the browser with ftp on a directory,
				 and selecting a gzipped txt file, that
				 an E19 occurred (which was issued by
				 gzip.vim). Fixed.
		Mar 14, 2014	* Implemented :MF and :MT (see netrw-:MF
				 and netrw-:MT, respectively)
		Mar 17, 2014	* :Ntree [dir] wasn't working properly; fixed
		Mar 18, 2014	* Changed all uses of set to setl
		Mar 18, 2014	* Commented the netrw_btkeep line in
				 s:NetrwOptionSave(); the effect is that
				 netrw buffers will remain as 'bt'=nofile.
				 This should prevent swapfiles being created
				 for netrw buffers.
		Mar 20, 2014	* Changed all uses of lcd to use s:NetrwLcd()
				 instead. Consistent error handling results
				 and it also handles Window's shares
				* Fixed netrw-d command when applied with ftp
				* https: support included for netrw#NetRead()
	v150:	Jul 12, 2013	* removed a "keepalt" to allow ":e #" to {{{2
				 return to the netrw directory listing
		Jul 13, 2013	* (Jonas Diemer) suggested changing
				 a <cWORD> to <cfile>.
		Jul 21, 2013	* (Yuri Kanivetsky) reported that netrw's
				 use of mkdir did not produce directories
				 following the user's umask.
		Aug 27, 2013	* introduced g:netrw_altfile option
		Sep 05, 2013	* s:Strlen() now uses strdisplaywidth()
				 when available, by default
		Sep 12, 2013	* (Selyano Baldo) reported that netrw wasn't
				 opening some directories properly from the
				 command line.
		Nov 09, 2013	* :Lexplore introduced
				* (Ondrej Platek) reported an issue with
				 netrw's trees (P15). Fixed.
				* (Jorge Solis) reported that "t" in
				 tree mode caused netrw to forget its
				 line position.
		Dec 05, 2013	* Added <s-leftmouse> file marking
				 (see netrw-mf)
		Dec 05, 2013	* (Yasuhiro Matsumoto) Explore should use
				 strlen() instead s:Strlen() when handling
				 multibyte chars with strpart()
				 (ie. strpart() is byte oriented, not
				 display-width oriented).
		Dec 09, 2013	* (Ken Takata) Provided a patch; File sizes
				 and a portion of timestamps were wrongly
				 highlighted with the directory color when
				 setting :let g:netrw_liststyle=1 on Windows.
				* (Paul Domaskis) noted that sometimes
				 cursorline was activating in non-netrw
				 windows. All but one setting of cursorline
				 was done via setl; there was one that was
				 overlooked. Fixed.
		Dec 24, 2013	* (esquifit) asked that netrw allow the
				 /cygdrive prefix be a user-alterable
				 parameter.
		Jan 02, 2014	* Fixed a problem with netrw-based balloon
				 evaluation (ie. netrw#NetrwBalloonHelp()
				 not having been loaded error messages)
		Jan 03, 2014	* Fixed a problem with tree listings
				* New command installed: :Ntree
		Jan 06, 2014	* (Ivan Brennan) reported a problem with
				 netrw-P. Fixed.
		Jan 06, 2014	* Fixed a problem with netrw-P when the
				 modified file was to be abandoned.
		Jan 15, 2014	* (Matteo Cavalleri) reported that when the
				 banner is suppressed and tree listing is
				 used, a blank line was left at the top of
				 the display. Fixed.
		Jan 20, 2014	* (Gideon Go) reported that, in tree listing
				 style, with a previous window open, that
				 the wrong directory was being used to open
				 a file. Fixed. (P21)
	v149:	Apr 18, 2013	* in wide listing format, now have maps for {{{2
				 w and b to move to next/previous file
		Apr 26, 2013	* one may now copy files in the same
				 directory; netrw will issue requests for
				 what names the files should be copied under
		Apr 29, 2013	* Trying Benzinger's problem again. Seems
				 that commenting out the BufEnter and
				 installing VimEnter (only) works. Weird
				 problem! (tree listing, vim -O Dir1 Dir2)
		May 01, 2013	* :Explore ftp://... wasn't working. Fixed.
		May 02, 2013	* introduced g:netrw_bannerbackslash as
				 requested by Paul Domaskis.
		Jul 03, 2013	* Explore now avoids splitting when a buffer
				 will be hidden.
	v148:	Apr 16, 2013	* changed Netrw's Style menu to allow direct {{{2
				 choice of listing style, hiding style, and
				 sorting style

13. Todo						netrw-todo {{{1

07/29/09 : banner	:|g:netrw_banner| can be used to suppress the
	 suppression	 banner. This feature is new and experimental,
			 so its in the process of being debugged.
09/04/09 : "gp"		: See if it can be made to work for remote systems.
			: See if it can be made to work with marked files.

14. Credits						netrw-credits {{{1

	Vim editor	by Bram Moolenaar (Thanks, Bram!)
	dav		support by C Campbell
	fetch		support by Bram Moolenaar and C Campbell
	ftp		support by C Campbell <>
	http		support by Bram Moolenaar <>
	rcp
	rsync		support by C Campbell (suggested by Erik Warendorph)
	scp		support by raf <>
	sftp		support by C Campbell

	inputsecret(), BufReadCmd, BufWriteCmd contributed by C Campbell

	Jérôme Augé		-- also using new buffer method with ftp+.netrc
	Bram Moolenaar		-- obviously vim itself, :e and v:cmdarg use,
	 fetch,...
	Yasuhiro Matsumoto	-- pointing out undo+0r problem and a solution
	Erik Warendorph		-- for several suggestions (g:netrw_..._cmd
				 variables, rsync etc)
	Doug Claar		-- modifications to test for success with ftp
	 operation

Modelines: {{{1

 Main

 Commands index

 Quick reference

1. Contents						 {{{1

2. Starting With Netrw					 {{{1

3. Netrw Reference					 {{{1

4. Network-Oriented File Transfer			 {{{1

5. Activation						 {{{1

6. Transparent Remote File Editing		 {{{1

7. Ex Commands						 {{{1

8. Variables and Options		 {{{1

9. Browsing		 {{{1

OBTAINING A FILE					 {{{2

11. Debugging Netrw Itself				 {{{1

12. History						 {{{1

13. Todo						 {{{1

14. Credits						 {{{1

Modelines: {{{1

 Generated at 2024-03-13 05:24 from d548863

 parse_errors: 0 (report docs bug...) | noise_lines: 2

